
TagWrite 3.0
for Windows

Template Designer’s Guide
Command Reference

ZANDAR Corporation

TagWrite 3.0 For Windows
Template Designer’s Guide
Command Reference

Copyright protection claimed includes all forms and matters of copy-
rightable material and information now allowed by statutory or judicial
law or hereinafter granted, including without limitation, material gen-
erated from the software programs which are displayed on the screen
such as icons, screen display looks, etc. Reproduction of this manual
by any means, including xerography, scanning, or any electronic
means, is prohibited.

Copyright 1994 ZANDAR Corporation. All rights reserved.

TagWrite is a registered trademark of the ZANDAR Corporation.

IBM is a trademark of the International Business Machines Corporation

Microsoft, Microsoft Word, Microsoft Word For Windows, Windows and
Rich Text Format (RTF) are registered trademarks of Microsoft Corporation.

"WordPerfect" is a trademark of the WordPerfect Corporation.

Ventura & Ventura Publisher are trademarks of Corel Corporation.

Information in this manual is subject to change without notice and
does not represent a commitment on the part of the vendor. The Tag-
Write software is furnished under a license agreement and may be
used or copied only in accordance with the terms of the agreement.

ZANDAR Corporation, creator of TagWrite, is a pioneer in the develop-
ment of SGML tools and other tagging applications. Our products spe-
cialize not only in tagging but also in untagging SGML and
reformatting it for display and other uses.

ZANDAR offers additional software tools and services to expand your
SGML application. An expanded tool set is available to automatically
and bi-directionally transform Rich Text Format (RTF) tables and fully
formatted SGML CALS tables including complete table declaration,
support for spanning cells, grid and box, and all character formatting.
Extensions can be developed to fully transform tables between SGML
and virtually any other markup.

For SGML and other tagging/untagging development services and soft-
ware tools, contact ZANDAR Corporation through our telephone listing
in Burlington, Vermont, USA. For information on development serv-
ices and software call our sales-only line at 800-639-5818. (Sorry, no
support calls can be accepted. For support, contact Corel Technical
Support at 1-800-818-1848).

ZANDAR Corporation
P.O. Box 467
Jericho, Vermont
05465

Table of Contents
Command Reference Guide __________________________ 1

Part 1___ 3
Overview . 3
Tokens . 4
Supertokens . 7
TagWrite Special Codes . 8
Reserved Characters In the Template Editor 9
Frequency Indicators . 10
Logical Operators . 11
Parenthetical Expressions . 12
The & Ampersand Designates a Style Token 13
Counters . 13

Part 2__ 14
Overview . 14
Conventions . 15
Distinguishing Tokens from a Wordprocessor Code 15

& Ampersand [&style] . 16
* (asterisk) . 17
+ (plus symbol) . 20
? (question mark) . 21
() (parentheses) . 22
| (vertical bar) . 24
[-] (hyphen) . 26
[^] (normal space) . 28
[ALL] . 30
[BELL] . 31
[BLD] . 32
[BLDOFF] . 34
[CENTER] . 35
[CF] (Character Format) . 37
[CF + PF] . 39
COUNTER TOKENS . 41
[CR][LF] . 46
[DULIN], [DULINOFF] (double underline) 50
[ENDNOTE] (WordPerfect only) . 52
FIELDS (RTF only) [FLD], [FLDINST], [FLDRSLT] 53
[FILTxT] . 55
[Flush^Rt] . 57
[FOOTNOTE] . 58
[GRPTxT] . 59

i \ Table of Contents

[/GRP] . 61
[HIDE] . 62
[HNL] . 63
[HPg] . 66
[H^] . 67
[INDEX] . 68
[INDT] . 70
[ITAL] . 72
[ITALOFF] . 73
[JUST] (RTF Only) . 74
[KEEP] . 75
[NO] . 77
[PF] Paragraph Format . 80
[PLAIN] . 82
[RESET] . 84
[REVISED], [REVOFF] . 87
[SmCAP] . 88
[SmCAP/] . 90
START . 91
[STRKOFF] . 92
[STRKTHRU] . 93
[SUPER], [SUB] (Super and Subscript) 94
[TAB] . 95
Table Tokens . 96
[TOC] . 97
[TeXt + #] . 98
[<TeXt>] . 99
[TxT/all] . 100
[ULIN] . 102
[ULINOFF] . 104
WordPerfect Justification Group . 105
[/WPDATA] . 106
[WPLINK] . 107

Table of Contents / ii

O V E R V I E W

Com m and Reference Guide
The Command Reference is divided into two parts and provides com-
plete definitions for every command used in the TagWrite
Template Language.

Part 1 briefly describes each of these topics:

• Tokens
• Supertokens
• Frequency Indicators
• Logical Operators
• Reserved Characters
• Parenthetical Expressions
• Counters

Part II of the Command Reference explains in detail each command of
the Template Language. Example Template rules are provided where
necessary to enhance the descriptions.

Conceptual and specific instructions on how to create Templates are
contained in the Template Designer’s Guide. If you are new to TagWrite
Template design, you should read Chapters 1 through 7 in the Tem-
plate Designer’s Guide. Tutorials are included in chapters 4 and 7. Do
not rely on this Command Reference as an introduction to TagWrite. It
will be most useful to you after you understand how the program func-
tions. Refer also to Chapter 8, “Special Techniques For RTF (Rich Text
Format) and WordPerfect” in the Template Designer’s Guide. Informa-
tion about special handling for Microsoft Word (RTF) and WordPerfect
files.

Command Reference Guide / 1

2 \ TagWrite: Command Reference

P A R T

Overview
Part 1 briefly describes each of these topics:

• Tokens
• Supertokens
• Frequency Indicators
• Logical Operators
• Reserved Characters
• Parenthetical Expressions
• Counters

 1

Overview / 3

Tokens
TagWrite Tokens represent specific individual units of information con-
tained in the Microsoft RTF, WordPerfect, or ASCII file. There are three
categories of Token information, Codes Styles and Alphanumeric char-
acters. They are described below.

Codes
• “Codes” are word processor format commands.

A ”code” is a single-byte, multi-byte or binary character that
is understood only by a specific word processor. TagWrite
Tokens represent these word processing codes allowing
TagWrite to read and write the word processing file format.

Some codes, like {center} or {tab}, are used with WordPerfect
and Microsoft Word RTF. Others, like [PLAIN] or [RESET] are
used only with RTF. Some, like [CR] and [LF] are used only
with straight ASCII files.

Styles
• TagWrite considers a word processor Style to be a Token if

your version of TagWrite supports the Style Module.

Alphanum eric characters
• The {space} character and all ASCII alphanumeric characters

that are entered in the TagWrite Template Editor from the
standard keyboard are tokens.

A TagWrite Token is one kind of tool used in the Top line of a Template
rule to search for a pattern of information in a text file. The pattern
may contain one or more word processor format commands, a Style if
your version of TagWrite supports styles, one or more ASCII charac-
ters, or a combination of these components.

A Token is used in the Bottom line of a rule to write into the output file
individual ASCII characters, word processor format commands (includ-
ing styles if supported by your version of TagWrite), or a combination of
these components.

By selecting “Codes” from the Template Editor Menu Bar, a Codes col-
umn appears on the right hand side of the Template Editor Screen.

TagWrite is delivered with a robust list of Tokens. New Tokens repre-
senting other word processing format information can be added to the
list using the TagWrite Codes Editor explained in Appendix A. Since
you can make new Tokens, there is no definitive list.

Token Sam ples
Following is a sample of Tokens. The first part lists some Tokens that
are used with both WordPerfect and Microsoft Word RTF. The second
part lists some Tokens used only with RTF. The third part lists some
straight ASCII tokens that are not easily entered from the keyboard.

4 \ TagWrite: Command Reference, Part 1

Tokens Used W ith W ordPerfect 5.x and M S RTF
Although the TagWrite Template editor displays the same TagWrite To-
ken for many functions in WordPerfect and RTF, the internal byte and
bit information handled by TagWrite is completely different for Word-
Perfect and RTF. TagWrite handles these differences automatically.

[BLD] — a {bold on}

[BLDOFF] — a {bold off}

[CENTER] — a {center}

[HNL] — a {hard new line}. A {hard new line} is created in a wordproces-
sor every time the Enter key is pressed. A {hard new line} is used in a
word processed file most commonly to indicate the end of a paragraph
of text.

[HPg] — a {hard page break}. Used to force a page break in the text be-
fore the normal end-of-page.

[H^] — a {hard space} (also known as a “non-breaking” space). This is a
special character in each word processor, and it is not the same as an
ordinary space. The {hard space} is commonly used to create a space
between text characters that will not break the line at the right margin
and will not collapse when the line is justified.

[INDT] — an {indent}. A paragraph formatting code that indents the
first and all subsequent lines of text. Used to create an indented list or
“step”. TagWrite is not concerned with the actual measurement of
space of each indent. Actual spacing will vary depending on the set-
tings established in your word processor. [INDT] is not the same as
[TAB].

[ITAL] — an {italics on}

[ITALOFF] — an {italics off}

[SmCAP] — a {small caps on}

[SmCAP/] — a {small caps off}

[STRKTHRU] — a {strikethrough on}

[STRKOFF] — a {strikethrough off}

[TAB] — a {tab}. Tab is recorded differently in WordPerfect, Microsoft
Word RTF, and ASCII. It is, therefore, not a standard character, and
TagWrite must use a [TAB] Token in the Codes column. TagWrite is
concerned with the presence of a tab and the number of tabs present,
but it is not concerned with the actual spacing of a {tab} which depends
on the tab stops set in your word processor. {tab} is not the same as a
Microsoft Word {first line indent}.

[ULIN] — an {underline on}

[ULINOFF] — an {underline off}

Other Tokens are described in the following part of this chapter.

Overview / 5

Tokens Used W ith RTF Only
[PLAIN] — used in the Bottom line before writing back styles.

[RESET] — used in the Bottom line before writing back styles.

[1stIND] — a {first-line indent}. Not the same as a {tab} code. Used only
with Microsoft Word to indent the first line of text in a paragraph. Gen-
erally used in the Bottom line to write back a First Line Indent. Use
[STab] Supertoken in the Top line.

[HIDE] — Begin “hidden text”

[HIDEOFF] — End of “hidden text”

[FLDRSLT] — Start of Field Result Group

[/GRP] — End of all named groups

Exam ples of ASCII Tokens
[CR][LF] — The {carriage return/linefeed} combination is used in a
straight ASCII file to indicate the end of a line or paragraph of text. [CR]
and [LF] can be used separately.

[̂] — a {space}. This Token is used to indicate the normal {space} char-
acter which is keyentered with the Spacebar.

[BELL] — a {bell}. The ASCII character (hex 07) for a "beep" or {bell} is
commonly used as a typesetting delimiter by the U.S. Government
Printing Office. [BELL] illustrates that you can make a TagWrite Token
for any ASCII character.

6 \ TagWrite: Command Reference, Part 1

Supertokens
Supertokens are a TagWrite proprietary invention. They are designed
to be started by specific characters or commands and ended by others.

Once started, the Supertoken absorbs the start-up character and all
subsequent characters and word processing format commands until it
finds the assigned character or format command that signals a stop.
The character or format command that stops a Supertoken is not in-
cluded in the string that is absorbed by the Supertoken.

A Supertoken is used in the Bottom line of a rule to write back the
group of characters or format commands to the output document.

The following is a list of the Supertokens delivered with TagWrite Ver-
sion 3.0:

[TeXt+#] — The text plus number Supertoken is a general, workhorse
Supertoken used to capture letters, punctuation and numbers, and
certain word processing character format commands in a string of any
length.

[FILTxT] — Another major workhorse. Used for intraparagraph tagging
to “filter text” from character formats like {bold}, {italic}, {underline},
and used in table tagging.

[GRPTxT] — Used in RTF applications to pick up text within known
groups.

[NO] — The number Supertoken captures one number. The default set-
tings of TagWrite define a number as any combination of digits, hy-
phens, and commas, not separated by spaces, periods or alphabetic
characters. One occurrence of the [NO] Supertoken will be fulfilled by
any of the following:

12
123
12,345
12-345

[KEEP] — The [KEEP] Supertoken is started by everything in the input
document except {hard new line} and is ended by a {hard new line}.
[KEEP] generally is used with the ultimate Escape Rule in the main or
body Element. Also often used with untagging.

{<TeXt>] — The angle bracket text Supertoken is started by any alpha-
numeric or punctuation characters except for the left and right angle
brackets. It is stopped by a left or right angle bracket or a {hard new
line}. Used most often to capture letters, punctuation and numbers or
typesetting codes delimited by angle brackets.

[CF] — The character format Supertoken captures the word processing
character format commands for {bold on}, {underline on}, {italics on},
{small caps on}, and {strikethrough on}. Most often used in the Top line
rule with an asterisk (*) in order to capture any format commands in
any order and any frequency.

[PF] — The paragraph format Supertoken captures paragraph formats
like {indent}, {center}, {tab}, {flush right} and others. Most often used in

Overview / 7

the Top line rule with an asterisk (*) in order to capture any paragraph
format commands in any order and any frequency.

[CF + PF] — Combined power of [PF] and [CF] will capture be started by
any paragraph or character format and capture all formatting informa-
tion until stopped by alphanumeric characters. Most often used with
Style tokens.

[[TxT/all] — The text all Supertoken (short for “text stopped by all other
characters”) captures one single upper or lower case letter and is used
to remove alphabetic ordering (alphabetic numbering) from paragraphs
and lists so that the alphabetic ordering system can be replaced by the
correct tagname. It is started by any one alphabetic character and is
stopped by all alphanumeric and punctuation characters, as well as
{space}, {tab} and all other character and paragraph formatting com-
mands.

TagWrite Special Codes
Two codes are not true Tokens or Supertokens. These codes are built
into TagWrite and you cannot change their settings.

START — START is a marker that begins all Templates. It is used only
(and always) in the Current Element of Rule 0. It is hard coded into the
Current Element of Rule 0 of the Template Editor and cannot be edited.

[ALL] — [ALL] is used only on the Bottom line of a rule. It returns all let-
ters, punctuation, numbers, Tokens, and Supertokens captured by the
Top rule.

8 \ TagWrite: Command Reference, Part 1

Reserved Characters In the Template Editor
Reserved characters exist only in the Template Editor. So far as the typ-
ist working in the word processor is concerned, TagWrite has no re-
served characters. The end-user of TagWrite (“the typist”) can use any
character or format command to create the original document in the
word processor.

Characters are “reserved” in the Template Editor because they can
have two uses: One use is to give special meaning within template
rules. The second use is as an ordinary text character.

Top Line Reserved Characters
These characters:

’ * + ? | () [] ̂

are special TagWrite Template Language symbols, and therefore are re-
served characters when used in the Top line of a rule in the Template
Editor.

Bottom Line Reserved Characters
These characters:

’ [] ̂

are reserved characters in Bottom line rules in the Template Editor.

F F To use a reserved character as text:
• To use a reserved character as text in the Top or Bottom

line of a rule, you must enclose the reserved character in
single quotes with no spaces between the single quote
and the character. For example, by enclosing the
asterisk between single quotes, as shown:

 ’ * ’

TagWrite interprets this asterisk as actual text rather than as
a frequency indicator.

The only exception is the single quote itself. To use a single
quote as text in the Top or Bottom line, simply use two single
quotes in a row, as shown below:

 ’ ’

Overview / 9

Frequency Indicators
Frequency Indicators are tools that define the number of times a To-
ken, Supertoken, or parenthetical expression can occur in the Top line
of a rule and still fulfill the rule. There are three Frequency Indicators
with different functions. They are the asterisk, the plus sign, and the
question mark.

* — The asterisk indicator means zero or more occurrences. The aster-
isk indicates that a Token, Supertoken, character, or parenthetical ex-
pression may appear next in the text stream, or it may appear more
than once without limit, or it may not appear at all.

+ — The plus sign indicator means one or more occurrences. It indi-
cates that the Token, character, or parenthetical expression must ap-
pear next in the text stream at least once, but it may appear more than
once without limit.

? — The question mark indicator means zero or one occurrence. The
question mark indicates that the Token, character, or parenthetical ex-
pression may not appear or it may appear one time.

Use Only One Frequency Indicator A t A Tim e
Use of the Frequency Indicator is optional depending upon the require-
ments of your Top rule. You can place any one of the three Frequency
Indicators directly after a Token, Supertoken, character, or parentheti-
cal expression in the Top line of a Template rule.

You cannot place more than one Frequency Indicator after the same To-
ken in the same rule. For example, you cannot use a + and follow it im-
mediately with an * asterisk.

Frequency Indicators Are Plain Text In
Bottom Line
Frequency Indicators have no special function in the Bottom rule. In
the Bottom line, these symbols are treated as plain text and will be writ-
ten out to the tagged file literally.

Frequency Indicator and Supertoken
Caution: If you use an asterisk with a Supertoken in the Top line of a
rule, you cannot place that Supertoken in the Bottom line of the rule.
The asterisk allows that the Supertoken in the Top may not be fulfilled.
TagWrite does not allow an empty (null) Supertoken to be placed in a
Bottom rule, thus, if the Top is not fulfilled, and the Supertoken is writ-
ten in the Bottom line, TagWrite will not function correctly.

Three Supertokens in particular commonly use a Frequency Indicator:

[CF]

[PF]

[CF + PF]

[STab]

10 \ TagWrite: Command Reference, Part 1

For example, [CF] is used with an asterisk [CF]* to capture any and all
character formatting that may be embedded in the text. See Part 2 of
this guide for complete descriptions of the other Supertokens.

Logical Operators

AND
The AND expression is implied when you place Token codes, text char-
acters, Counters, symbols, etc. next to each other in a rule. For exam-
ple,

[CENTER][HNL]

in a Top line rule indicates that a {center} formatting code AND a {hard
new line} are both required if the rule is to be satisfied.

Caution: Commas should never be used to delimit Tokens as part of a
logical AND expression. Commas in the Top rule will be treated as text.
Use a comma in a rule only if you want that rule specifically to search
for a comma.

OR
The “pipe” or vertical bar character | represents the OR expression.

The OR | means that one Token or another in any order must appear
in the text if the Top rule is to be fulfilled.

The | sign is entered without any space between the two tokens or ex-
pressions it connects. For example:

([CENTER] | [ITAL])

in a Top line rule indicates that either a {center} formatting code OR an
{italics on} code must appear in the text for the rule to be satisfied.

Enclose OR Expressions in Parentheses
Every OR expression must be enclosed in parentheses. The parenthe-
ses delimit the membership in the OR statement.

Caution: Parentheses are required with an OR statement.

There is no limit (except the limit of 98 characters per line in a rule) to
the number of OR expressions which may be built into each rule.

Frequency Indicators with OR Expressions. You may use frequency in-
dicators with OR structures in parentheses.

The frequency indicator may be attached to any item within a paren-
thetical statement. For example, the following expression,

([INDT]* | [CENTER])

indicates zero or more occurrences of {indent}, OR one {center}.

The frequency indicator may be attached to the parenthetical state-
ment itself. For example, the following expression,

([INDT] | [CENTER])*

indicates zero or more occurrences of {indent} OR {center}.

Overview / 11

Parenthetical Expressions
Parentheses are used to group three kinds of expressions: OR state-
ments, ASCII Text Strings, and Combined ASCII Text and Token/Su-
pertoken strings.

Every OR Expression in Parentheses
Every OR expression must always be placed in parentheses. If the pa-
rentheses are missing, the Top rule will not function properly.

ASCII Text Strings
Any ASCII text string of alphanumeric and punctuation characters
meant to be a coherent group should be placed within parens. For ex-
ample,

(Address:)

would indicate a search for the word "Address" and the colon : charac-
ter.

Com bination Text and Token/Supertoken Strings
Any ASCII text string, in combination with tokens or Supertokens,
meant to be a coherent group should be placed within parens. For ex-
ample,

(Date:[TAB])

would indicate a search for the word "Date", the colon ":" character,
and one {tab}.

Frequency Indicators W ith Parenthetical
Expressions

Enclosing a string of text within parentheses allows you to treat the
string as a group rather than as individual characters. Grouping adds
clarity to your rules and allows the use of Frequency Indicators which
refer to the group. Frequency Indicators placed after parenthetical ex-
pressions indicate the number of times the contents of the expression
can occur.

12 \ TagWrite: Command Reference, Part 1

The & Ampersand Designates a Style Token
The & Ampersand is used to designate that a Token is a style Token.
For example:

[&STYLE]

The & Ampersand is not a reserved character in that it can be used
freely in rules; however, the & ampersand has a special meaning when
used to start a Token name.

The manual titled “Preparing a Styles Application” supplied with the
TagWrite Styles Module describes the use of the & Ampersand.

Note: Do not build a Token starting with an & Ampersand unless the
TagWrite Styles Module is installed. You will know if the Styles Module
is installed because the Codes Editor will be titled “Edit Codes and
Styles”. You cannot build a valid Style Token without the TagWrite
Style module.

Counters
Counters allow you to insert incremented or constant numeric or al-
phabetic values into the output document. Counters are used only in
the Bottom line of a Rule. Typically Counters are used:

• In the creation of tagged table data where each column
and/or row must be indicated with unique tagnames.

• To untag a file and restore sequential numbering or
alphabetization of lists.

• To increment paragraph number codes as required for some
SGML applications.

Counters are explained in detail in the Template Designer’s Guide,
Chapter 10, “Counters.”

Overview / 13

P A R T

Overview
Part 2 of this Command Reference Guide explains in detail each com-
mand of the Template Language, including each TagWrite Token, Su-
pertoken and frequency indicator. Example Template rules are
provided where necessary to enhance the descriptions.

 2

Commands and Definitions / 14

Conventions
Each TagWrite function is discussed systematically. Following is a list
of discussion categories and conventions followed throughout the re-
mainder of this chapter:

Definition – Defines the symbol, Token, Supertoken, or Counter name
and explains its use in Template rules.

Supertoken Code No. – Gives the Hexadecimal Supertoken code num-
ber as it was delivered in TagWrite and as it appears in CODES.DAT.

Started by – Lists the characters or format commands which trigger
(start) the Supertoken.

Stopped by – Lists the characters or format commands which termi-
nate (stop) the Supertoken.

Starts – Lists the Supertokens which a Token starts.

Stops – Lists the Supertokens which a Token stops.

Examples – Includes typical examples of how to use the symbol, To-
ken, Supertoken, or Counter.

Notes – Provides operational caveats and describes special circum-
stances that need to be considered when writing rules.

[] – Throughout the following text, square brackets [] are used to de-
note TagWrite Token names

{ } – “Curly brackets” { } delimit word processor “codes” (word proces-
sor format commands).

Distinguishing Tokens from a Wordprocessor Code
In most cases TagWrite has a Token that corresponds to the word proc-
essor “code”. It will not be uncommon to see, for example, the TagWrite
Token name like [BLD] in the same paragraph as the format code {bold
on}. It should be understood that [BLD] is the name of the TagWrite To-
ken, while {bold on} refers to the actual digital code in your word proc-
essed file that turns on bold formatting.

Tagnam es
We have used one convention for tagnames in the sample Templates
found throughout the following text. Tagnames are delimited by the left
and right angle brackets, such as:

 <tagname>

We have followed this convention since the left and right angle brackets
are commonly used delimiters for SGML and many kinds of typesetting
software.

Note: If your typesetting software uses a different naming convention,
simply substitute the appropriate naming convention when you build
your Templates. You are not bound to the use of any one style for repre-
senting tagnames.

15 \ TagWrite: Command Reference, Part 2

& Ampersand [&style]
The & Ampersand is used to designate that a Token is a Style Token.

Style Tokens are used with Template applications that capture or write
WordPerfect or Microsoft Word (RTF) styles.

The creation of Style Tokens requires the TagWrite Styles Module. See
the manual titled “Preparing A Styles Application” supplied with the
Styles Module for a complete description of Style Tokens, their crea-
tion, and their use.

Commands and Definitions / 16

* (asterisk)

Definition:
An asterisk symbol in the Top line of a rule captures zero or more oc-
currences of the preceding Token, Supertoken, character, or paren-
thetical expression. The asterisk is a powerful tool because it allows
that something may occur zero times which is another way of saying
that, with an asterisk, you can account for the possibility that the item
may not occur. The potential absence of something may be as impor-
tant as its presence.

An asterisk symbol in the Bottom line of a rule is treated as plain text.

Exam ples:

Exam ple 1
Use the asterisk symbol to find format commands such as {bold} which
may or may not be present in the paragraph. With the asterisk present,
the segment of the rule is fulfilled if the Token is present or not present.

The following rule is fulfilled if zero or more {bold} commands are en-
tered before an {indent} at the beginning of a paragraph.

Current Next
Element Element

0 body body
[BLD] * [INDT][TeXt + #][HNL]+

10 <list1>[TeXt + #][HNL]

In the above example, if a {bold} word processing code is not found, Tag-
Write will try to fulfill the remainder of the rule as if the [BLD]* were
never present in the Top rule. If a {bold} code is found, then the asterisk
will tell TagWrite to absorb the {bold} code. The {bold} code will be cap-
tured and will not become a part of [TeXt + #]. The {Bold} code, there-
fore, will not appear in the Bottom line output because we picked it off
in the Top, and, in this example, decided not to write it back in the Bot-
tom.

17 \ TagWrite: Command Reference, Part 2

Exam ple 2
The following rule is fulfilled whether or not the typist entered a {bold}
code before the {tab} code, after it, or both. The objective of this exam-
ple is to ensure that {bold} is removed from the tagged file regardless of
how many {bold} codes were entered and regardless of where the {bold}
code might appear in the original word processed file.

Current Next
Element Element

body body
[BLD] * [TAB][BLD] * [TeXt + #][HNL]+

10 <list1>[TAB][TeXt + #][HNL]

Exam ple 3
Another way to use the asterisk is to find periods between section num-
bers in the numbering system of an outlined document like a technical
manual.

In the example below, which we used in “Advanced Template Tech-
niques”, the number must be in the input text, but the period is op-
tional. Also, the [CF + PF] cleanup Supertoken and the [PF] Supertoken
written with an asterisk allow that paragraph and character formatting
may optionally occur.

1 body paranext
[CF+PF]* [NO](.)* [NO](.)* [NO](.)* ([^] | [PF])* [TeXt + #] [HNL]+

20 <para2>

2 body paranext

[CF+PF]* [NO](.)* [NO](.)* ([^] | [PF])* [TeXt + #] [HNL]+

19 <para1>

3 body paranext

[CF+PF] [NO](.)* ([^] | [PF])

18 <para0>

Commands and Definitions / 18

Notes:

No Supertoken In Bottom Rule If Asterisk is in Top
Caution: If you use an asterisk in the Top line of a rule with a Superto-
ken (i.e. [STab]*), then you can not write the Supertoken back in the
Bottom rule. The asterisk stands for “zero or more occurrences.” This
means that the Supertoken stands a chance of not being fulfilled in the
Top, and TagWrite can not write back an empty Supertoken in the Bot-
tom line.

Regular Tokens OK In Bottom
There is not a similar problem associated with the use of an asterisk af-
ter a regular TagWrite Token (i.e. [HNL]* or [BLD]*). You may always
choose to write any Token in the Bottom line of the rule regardless of
the content of the Top line.

19 \ TagWrite: Command Reference, Part 2

+ (plus symbol)

Definition:
A plus symbol in the Top line of a rule captures one or more occur-
rences of the preceding Token, Supertoken, character, or parenthetical
expression.

A plus symbol in the Bottom line of a rule is treated as plain text.

Exam ple:
Most typists enter two {hard new line} codes at the end of each para-
graph. In fact, your key entry conventions may dictate this. However,
the typist may inadvertently enter one, two or even three {hard new
line}s. By using the plus symbol, you can fulfill the rule and filter out
the unwanted {hard new line}s.

The following rule tags the input paragraph no matter how many extra
{hard new line}s are contained at the end of the paragraph in the word
processed file. We collect all of the {hard new line}s in the Top rule, and
write back only one {hard new line} in the Bottom. (If you wanted to
write back two {hard new line}s, you would simply add an additional
[HNL] Token to the Bottom.)

Current Next
Element Element

body body
[TAB][TeXt + #][HNL]+

10 <para1>[TeXt + #][HNL]

Commands and Definitions / 20

? (question mark)

Definition:
A question mark symbol in the Top line of a rule captures zero or one
occurrence of the preceding parenthetical expression, Token, or Super-
token from the input document.

A question mark symbol in the Bottom line of a rule is treated as plain
text in the output document.

Notes:
Use the question mark to find format commands which, according to
key entry conventions, may not occur at all, or should occur no more
than one time in a paragraph.

21 \ TagWrite: Command Reference, Part 2

() (parentheses)

Definition:
Parentheses are used to group text characters, OR (|) constructs, To-
kens, and Supertokens included in the Top line of a rule. One charac-
ter or a string included in a parenthetical expression is considered to
be a single entity. The contents of a parenthetical statement may be
modified by a frequency indicator.

You may group parenthetical statements within parenthetical state-
ments using double or triple sets of parentheses.

All OR (|) expressions should be enclosed in parens for clarity of pur-
pose. OR statements can be modified by frequency indicators.

Parentheses and parenthetical expressions included in the Bottom line
of a rule are taken as plain text.

Exam ples:

Exam ple 1
This example places [BLD] and [ULIN] Tokens together in an OR state-
ment. The parenthetical expression portion of the rule is fulfilled if
either a {bold} or an {underline} format command is encountered before
the {tab}. Notice that each “or” construct is and must be contained in
parentheses. If the parenthetical grouping is not correct, the logical op-
eration of “or” is unclear or bizarre.

Current Next
Element Element

body body
([BLD] | [ULIN])[TAB][TeXt + #][HNL]

10 <head1>[TeXt + #][HNL]

Exam ple 2
The following example captures the word “chapter” at the beginning of
a paragraph. In this limited example, we require that the word “chap-
ter” must be typed in lower case, exactly as it appears in the parentheti-
cal expression, or the rule will not be fulfilled. In practice, we are not
likely to want to write a rule in this way, but it is a useful example

Current Next
Element Element

0 body body
(chapter)[TeXt + #][HNL]

00 <chaptitle>[TeXt + #][HNL]

Commands and Definitions / 22

Exam ple 3
The following example captures the word “chapter” at the beginning of
a paragraph for all upper case letters, all lower case letters, or mixed
upper and lower case letters. This is a robust way of writing this rule,
and it illustrates the use of double parentheses. You may enclose par-
enthetical expressions within parenthetical expressions. In practice
there is no limit to the level of parenthetical nesting. However, common
sense dictates keeping the statement as simple as possible.

Current Next
Element Element

0 body body
((C)|(c))((hapter)|(HAPTER))[TeXt + #][HNL]

10 <haptitle>[TeXt + #][HNL]

Notes:
If your parens are not correctly matched, you will receive an error mes-
sage when using Error Check. This is a critical error. If you fail to cor-
rect the Error Check message and your parens do not match, TagWrite
may fail to run, and you may not receive a specific error message at
runtime.

23 \ TagWrite: Command Reference, Part 2

| (vertical bar)

Definition:
A vertical bar represents the Boolean or construct in the Top line of a
rule. It allows for the condition that one or another component of the
OR expression be fulfilled. An OR expression may include one or more
OR (|) segments, for example

([TAB]|[INDT]|[CENTER])

A vertical bar in the Bottom line of a rule is treated as plain text and
will be written literally to the output document.

Exam ples:

Exam ple 1:
The following example shows you how to write a rule to capture a para-
graph which begins with the word “chapter.” The rule captures two vari-
ations of the word form and is fulfilled if the word has initial caps, or is
all uppercase.

Current Next
Element Element

0 body body
((Chapter) | (CHAPTER))[TeXt + #][HNL]+

00 <CHAPTER^TITLE>[TeXt + #][HNL]

Exam ple 2:
The following example presents an efficient way to generalize the pre-
vious rule.

Current Next
Element Element

0 body body
((C) | (c))((hapter) | (HAPTER))[TeXt + #][HNL]

10 <chaptitle>[TeXt + #][HNL]

Commands and Definitions / 24

Notes:
In the examples, notice that each OR construct is contained in parens.

There is no limit to the number of or constructs in each rule.

Each component of the OR expression may be modified by a frequency
indicator, and the whole OR expression may be modified by a fre-
quency indicator. The following examples illustrate the flexibility of the
combined use of parens, the OR operator (|), and the asterisk (*).
You can invent many variations to meet specific needs.

([TAB] | [INDT])* means that any number of {tab} OR {indent} codes may
occur in any order and satisfy the rule, but if neither of the Tokens oc-
cur, then the rule will also be satisfied.

([TAB]* | [INDT]) means that a {tab} code may or may not occur, OR that
it may occur many times. The expression also specifies that an {indent}
code can occur once and still satisfy the rule. However, since there is
no asterisk modifying the entire group, the occurrence of either one or
more {tab}s or one {indent] or both is required. That is, at least one {tab}
or one {indent} must occur if the Rule is to be satisfied.

25 \ TagWrite: Command Reference, Part 2

[-] (hyphen)

Definition:
The hyphen Token is used to represent the word processor {hyphen}
which is entered into a word processed file by pressing the hyphen key.

In the Template, use the hyphen Token [-] to capture the hyphen that
has been keyentered in the word processed document.

Note On Different Hyphens
WordPerfect and Microsoft Word each produce several different kinds
of hyphens. The WordPerfect and RTF codes for handling these hy-
phens are mapped differently.

The TagWrite Template Editor has tried to simplify handling hyphens
by using one hyphen Token [-].

Caution: In the Template Rule, unless you fully understand the Word-
Perfect or RTF native file formats, do not attempt to represent the word
processor’s hyphen by pressing the hyphen key on the standard key-
board.

At the end of this section, there is a Note describing some alternative
methods to handle the hyphen.

A [-] Token in the Top line of a rule captures the occurrence of a {hy-
phen} code in the input document.

A [-] Token in the Bottom line of a rule inserts the {hyphen} code into
the output document.

Starts:
[TeXt + #], [FILTxT], [GRPTxT], [KEEP], [<TeXt>]

Stops:
[STab], [CF], [PF], [CR + LF], [TxT/all]

Notes:
Each word processor also has a hard, non-breaking hyphen, soft hy-
phens, “optional hyphen” and sometimes you can enter an “Em” or
“En” dash or other kinds of dash marks.

Each kind of hyphen or dash, other than the standard keyboard
“breaking hyphen”, can be controlled with TagWrite. TagWrite does not
provide default Tokens for these hyphens.

If you want to search for or insert any other type of hyphen in your
document, you must create a new Token for it. You may build these To-
kens. Refer to Appendix A and B of this manual and to the Microsoft
Word Technical Reference Manual, Chapter 10.

Commands and Definitions / 26

Suggestions:
If you use the WordPerfect {hard hyphen} produced by pressing Home
and the hyphen key, you produce a standard ASCII hyphen. You may
produce the WordPerfect “hard hyphen” in a TagWrite rule by pressing
the ordinary hyphen key in the Template Editor.

RTF Only: It is true also that if you are only working with RTF, you can
use the keyboard hyphen in the Template Editor to represent the key-
board hyphen entered from within Microsoft Word. We recommend us-
ing the hyphen Token [-] to avoid confusion, but if you are an
experienced TagWrite user, you can take advantage of this shortcut for
RTF only.

Note: Keyentry Suggestion: Consider using the {hyphen} to start a
paragraph if you need a way to delimit a certain category of paragraph
for your keyentry standard. You would then set up a rule to look for a “[
-][TeXt + #][HNL]”. Score the rule higher than any rule containing a
[TeXt+#], [<TeXt>], [FILTxT] or [GRPTxT] Supertokens because the hy-
phen starts these Supertokens.

27 \ TagWrite: Command Reference, Part 2

[^] (normal space)

Definition:
A caret in square brackets [̂] represents a space Token in the Top line
of a rule. It captures the occurrence of a {space} hex 20 code in the in-
put document.

A space [̂] Token in the Bottom line of a rule is treated as a normal
{space} hex 20 in the output document.

Key Entry:
Spacebar

Starts:
None

Stops:
[NO], [STab], [CF], [PF], [TxT/all], [CF + PF]

Notes:
1. The caret is available in the Codes list in Token [̂]. You do not need to

use the [̂] Token from the codes list. If you desire, you may generate
a caret in the Template Editor by striking the Spacebar. Brackets are
optional.

2. It is recommended, for clarity’s sake, that you use the space Token with
square brackets [̂] whenever you follow it with a Frequency Indicator.

3. The occurrence of an ordinary hex 20 space is unpredictable and can
occur randomly in a word processed document. For this reason, the
space Token should always be set to be insignificant unless you have a
specific reason and controlled application setting in which you can
safely treat hex 20 space as significant.

SUGGESTION: There are times when you want to ensure that one or
more stray blank spaces are removed from the beginning of a line of
text. By placing “[̂]*” at the correct place in the Top rule, all spaces
will be captured.

4. Scoring a rule using a [̂]

Commands and Definitions / 28

Any time an initial space is required to fulfill a Rule, that Rule must be
scored higher than any other rule seeking flush left text. The following
example for a straight ASCII Template illustrates the point:

Current Next

Element Element

body body
([^][^][^][^]) [^]+[TeXt + #][CR][LF]

30 [TeXt + #][CR][LF]

[TeXt + #][CR][LF]

20 <flush>[TeXt + #][CR][LF]

Any string of text preceded by five or more spaces will be given the tag
of , <five>, while any other text will be tagged as <flush>.

29 \ TagWrite: Command Reference, Part 2

[ALL]

Definition:
An [ALL] Token in the Bottom line of a rule returns everything captured
in the Top line of the rule, including: Tokens, Supertokens, alphanu-
merics, {hard new line} and all other information captured by the Top
line of a rule.

The [ALL] special code cannot be used in a Top line of a rule.

Started by:
Not applicable; [ALL] is never used in the Top line rule.

Stopped by:
Not applicable; [ALL] is never used in the Top line rule.

Notes:
Use [ALL] in the Bottom rule when you want to ensure that everything
captured in the Top line is written to the new document. When [ALL] is
used in the Bottom line, it may be preceded or followed by any charac-
ters, like tagnames or {hard new line}s.

[ALL] is useful when you wish to import all {tab}s and/or all word proc-
essor character format commands as well as all text into the typeset-
ting software environment.

Do not use [ALL] for untagging templates. [ALL] will return the tag-
name captured in the Top line. Use [KEEP] for untagging.

Commands and Definitions / 30

[BELL]

Definition:
A [BELL] Token in the Top line of a rule captures the occurrence of the
ASCII code (hex 07) for the BELL code in the input document.

A [BELL] Token in the Bottom line of a rule inserts an ASCII BELL code
(hex 07) in the output document.

Starts:
None

Stops:
None

Notes:
[BELL] is commonly used as a typesetting delimiter by the U. S. Gov-
ernment Printing Office.

[BELL] is included in this list also to illustrate that you can create a To-
ken out of any single ASCII character. In addition, you can create To-
kens from any word processing code supported in the Setting file.

31 \ TagWrite: Command Reference, Part 2

[BLD]

Definition:
A [BLD] Token in the Top line of a rule captures the occurrence of a
{bold on} format command in the input document.

A [BLD] Token in the Bottom line of a rule inserts a {bold on} format
command into the output document.

Starts:
[TeXt + #], [KEEP], [CF], [CF + PF]

Stops:
[STab], [FILTxT], [TxT/all], [PF]

Exam ples:

Exam ple 1
You can use the [BLD] Token in the Top to strip unneeded {bold} for-
matting codes from your input document. In the following example,
[BLD] is included in the Top rule, but omitted in the Bottom rule. This
technique effectively eliminates the {bold on} code from the new docu-
ment.

Current Next
Element Element

0 body body
 [BLD] * [TeXt + #][HNL]

00 [TeXt + #][HNL]

Exam ple 2
In this example, the {bold} is being added in the Bottom rule. The objec-
tive is to ensure that the text appearing in the typeset version will ap-
pear in bold print. In the Bottom rule, make sure to include the
[BLDOFF] Token before the [HNL] Token in such instances.

Current Next
Element Element

0 body body
 [CENTER] [TeXt + #][HNL]+

00 <title>[BLD][TeXt + #][BLDOFF][HNL]]

Commands and Definitions / 32

Notes:
If your SGML Document Type Definition or typesetting software re-
quires a specific embedded code to indicate bold on, then you can key
enter that tagname on the Bottom line immediately preceding the text.
Be sure to use the matching bold off tag name following the bolded text
or subsequent text will continue to be formatted in bold.

The [CF], [CF + PF], and [TeXt + #] Supertokens are started by {bold on}
and capture the {bold on} code. If the [TeXt + #] Supertoken happens to
be started by a {bold on} word processing format code, and if the
[TeXt + #] Supertoken is written back in the Bottom line, then the {bold
on} code will be written to the output document. See the sections on
[CF] and [TeXt + #] for additional information.

The [BLD] and [BLDOFF] Tokens and the [CF + PF] Supertoken may be
used in conjunction with the [FILTxT] Supertoken to capture character
formatting within a paragraph.

33 \ TagWrite: Command Reference, Part 2

[BLDOFF]

Definition:
A [BLDOFF] Token in the Top line of a rule captures the occurrence of a
{bold off} code in the input document.

A [BLDOFF] Token in the Bottom line of a rule inserts a {bold off} code
into the output document.

Starts:
none

Stops:
[STab], [FILTxT], [PF]

Notes:
The [BLD] and [BLDOFF] Tokens may be used in conjunction with the
[FILTxT] Supertoken character formatting within a paragraph.

The [BLDOFF] Token is preset to insignificant in TagWrite release.

Caution: Do not use [BLDOFF] or other “off” Tokens in the Bottom rule
unless it is preceded somewhere in the rule by [BLD] (on). Some word
processors cannot tolerate the presence of an “off” code if there is no
prior “on” code.

Commands and Definitions / 34

[CENTER]
This section describes {center} for WordPerfect and RTF.

Note: WordPerfect supports two center format commands: normal
{center} and a separate {center justified} format that is often used in
place of the normal {center}. The TagWrite [CENTER] Token. is used to
capture both WordPerfect {center justify} and normal {center}. This
functionality is hard coded in TagWrite, and cannot be modified by the
Template Designer.

Definition:
The [CENTER] Token is used in Microsoft Word and WordPerfect

A [CENTER] Token in the Top line of a rule captures the occurrence of
centered text in the input document.

A [CENTER] Token in the Bottom line of a rule inserts a {center} format
command into the output document.

Starts:
[PF], [CF + PF], [KEEP]

Stops:
[NO], [STab], [TxT/all],[CF], [FILTxT]

Exam ples :

Exam ple 1
The following example shows the Top line of a rule written to capture
centered chapter headings. In the Bottom rule, the center Token is
dropped, the chapter heading is tagged, and the text in the heading is
passed to the output document.

Current Next
Element Element

0 body body
[CENTER][TeXt + #][HNL]

00 <chaphead>[TeXt + #][HNL]

Exam ple 2
In the following example the Top line of the rule from Example 1 is re-
written to require the presence in the text file of the centered word
“Chapter”. This rule is written with the expectation that the word
“chapter” will be followed by the chapter number. The word “CHAP-
TER” is written back in all caps in the Bottom line of the rule followed
by any text or number captured by [TeXt + #]. This is a common
method used to trap the chapter number and ensure that it is preceded
by the word “CHAPTER”.

35 \ TagWrite: Command Reference, Part 2

Current Nex
Element Element

0 body body
[CENTER]*((C) | (c))((hapter)|(HAPTER))[TeXt + #][HNL]

10 <chaptitl>e[TeXt + #][HNL]

Notes:
Some word processors provide a {left and right indent} format code. The
{center} code is not the same as the {left and right indent} code. The {left
and right indent} code is insignificant in TagWrite as delivered.

Commands and Definitions / 36

[CF] (Character Format)

Definition:
A [CF] Supertoken in the Top line of a rule captures any one occur-
rence or many occurrences of either the {bold} or {underline} or {italics}
or {strikethrough} or {small caps} format commands in the input docu-
ment without having to specify which format command to capture. All
format commands in any order will be captured.

A [CF] Supertoken in the Bottom line of a rule takes the {bold}, {under-
line}, {italics}, {strikethrough}, or {small caps} format command cap-
tured by the [CF] in the Top rule, and inserts it into the output
document.

Code No.
80000040

Started by:
{Bold}, {underline}, {italics}, {small caps} {strikethrough}, {superscript},
{subscript}, {revised}, or {double underline}

Note: You may add such formats as super or subscript, double under-
line or other character formats. You must modify the [CF] Supertoken
according to the instructions in Appendices 1 and 2 to this manual.

Stopped by:
{indent}, {center}, {flush right}, {first line indent}, {hard new line} or any
alphanumeric character or punctuation.

Exam ples:

Exam ple 1
In the following example, the [CF] Supertoken captures unwanted for-
mat commands in the Top line of a rule. The unwanted format com-
mands are deleted from the tagged file by omitting [CF] (and [TAB])
from the Bottom line of the rule.

4 body body
[CF][TAB][TeXt+#][HNL]+

20 <paratext>[TeXt+#][HNL][HNL]

37 \ TagWrite: Command Reference, Part 2

Notes:
1. [CF] starts when it sees a character format code and stops when it sees

text. Therefore, one, or many character format codes will be absorbed
by [CF] if they occur before [CF] is stopped by the occurrence of an al-
phanumeric character. Thus, [CF] will capture any or all character for-
mat commands in any order.

2. A major reason to use [CF] is to eliminate tagging errors. By using [CF]
in the Top rule, the heart of the rule can be fulfilled regardless of the ap-
pearance of character formatting codes at the start of the paragraph.

You may be well advised to use an asterisk * with [CF]. Most often you
use the [CF] Supertoken to remove stray character formatting or for-
matting that is not critical to making a tagging decision. The very no-
tion of “stray” implies that you do not know if the character formatting
is present or not. Thus, by using [CF]* with an asterisk, you can pick
up the stray formatting if it is present, and if it is not present, the main
part of the rule can still be fulfilled.

If you did not use the asterisk, then the [CF] Supertoken would have to
be fulfilled in order for the Rule itself to be fulfilled. This is rarely the in-
tended outcome.

Caution: If you use the asterisk in the Top line of a rule with the [CF]
Supertoken or any Supertoken, then you cannot place the [CF] Super-
token in the Bottom line of that rule. Remember that the asterisk
stands for “zero or more occurrences.” This means that [CF]* might not
be fulfilled. If a Supertoken is not fulfilled in the Top, you cannot write
it back in the Bottom. TagWrite will malfunction if you try to write an
empty (zero occurrence) Supertoken to the output document.

Commands and Definitions / 38

[CF + PF]

Definition:
A Supertoken that is started by all significant word processing charac-
ter format codes and all significant paragraph format codes.

[CF + PF]* cleans out the paragraph and character formatting where
you do not want significant formats to influence fulfillment of the Rule.

Normally used with an asterisk.

Used primarily in the Cleanup Escape Rule and in the Top line follow-
ing a Style Token to clean out paragraph and character formatting be-
tween the style Token and the beginning of text. If your version of
TagWrite supports styles, see “Preparing a Styles Application”.

Code No.:
80000004

Started by:
{Bold}, {underline}, {italics}, {small caps}, {strikethrough}, {tab}, {super-
script}, {subscript}, {revised}, {double underline}, {indent}, {center}, {first
line indent}, {flush right}, {hanging indent}, {right indent}, {justification}

Stopped by:
{Space}, {hard space}, a style name embedded in the word processor
file, or any alphanumeric character or punctuation.

Exam ples

Exam ple 1: Styles

Current Next
Element Element

12 body body
[&style name][CF + PF]*[TeXt+#][HNL]+

00 <tagname>[TeXt + #][HNL]

The Top line of the rule will identify a word processor style name and
then the [CF + PF]* Supertoken (with asterisk) absorbs any of the para-
graph or character formats which are present. Because of the asterisk,
if no character or paragraph format codes are present in the word proc-
essed file, the search for the Style Token will still be fulfilled.

If a character or paragraph format code is present, [CF + PF] starts and
continues until it meets the first text character. This rule works only if
your version of TagWrite supports the Style Module.

39 \ TagWrite: Command Reference, Part 2

Exam ple 2: C leanup Escape Rule
[CF + PF] is used in a clean-up Escape Rule as in the example below:

body body
[CF + PF][HNL]+

99

The Top line is looking for any occurrence of a stray character or para-
graph format and a {hard new line}. The Bottom line throws it away.
This kind of Clean-up Escape Rule restrains your application from en-
tering bogus tags where “phantom” paragraphs composed of stray for-
matting occur.

Scored higher than all other rules with which it might compete. In the
default version of TagWrite, only rules using [TeXt+#] and [FILTxT] can
compete.

Notes:
1. Since [CF + PF] does not stop when it meets a {tab}, you cannot use [CF

+ PF] to clean out unwanted formatting in rules that depend on a [TAB]
Token as part of the Top Line.

2. Used in place of the separate ([CF] | [PF]) expression.

Commands and Definitions / 40

COUNTER TOKENS

[COLn], [COUNT^n], [C^n], [C^nA], [C^na]

Definition:
This section describes the second Counter Token also known as the
“Column” or “Count” Token.

The second Counter Token is never used in the Top line of a rule.

A second Counter Token located in the Bottom line of a rule writes the
current count to the output document, and then increments the
Counter by the increment value defined in the COUNTER file. Access to
the Counter file is described in Chapter 10 of the Template Designer’s
Guide.

The Counter is reset to its starting value defined in the COUNTER file
whenever a rule containing an End Counter or Reset Counter Token in
the Bottom line is fulfilled.

Exam ples:

Exam ple 1
In the following example, a Column Token is used to number text in a
list or table.

Current Next
Element Element

0 body body
[TAB][TeXt + #][HNL]

00 <list>[COL1].[TAB][TeXt + #][HNL]

Exam ple 2
In the following example, the Counter is used to number text in a list.
When an “ ” string and one or more {hard new line}s are encountered in
the input document, the column Counter is reset by [END/1] and two
{hard new line} codes are written to the output document.

Current Next
Element Element

body body
[TAB][TeXt + #][HNL]

10 <list>[COUNT^1].[TAB][TeXt + #][HNL]

41 \ TagWrite: Command Reference, Part 2

body body

(<END>)[HNL]+

10 [END/1][HNL][HNL]

Note: <END> in the Top line is seeking to match actual ASCII text in
the document indicating that the end of a list of some sort has been
reached. We use this example because it is brief. In fact, the end of a
structure in a document can be recognized in many ways. The most
likely way would be to have the numerical counting rules in a separate
Element. The Element would have a blank Top line Escape Rule. When
the Escape Rule is fulfilled, the Bottom would return the [END/1]
Counter Token, thus resetting the [C^1] counter. In complex counting
rules, one category of rules may be reset by the occurrence of a second
category of rules. When the first instance of the second category of
rules is fulfilled, the Bottom rule of the second category may contain an
[END/1] Token to reset the first group of Counters.

Counters can be used creatively to tag and untag any item that re-
quires sequential ordering.

Notes:
The starting count and increment values for these Counters are de-
fined in COUNTER file. See Chapter 10 of the Template Designer’s
Guide for more information on defining and operating Counters.

The default starting and increment values for the Counters are:

• [COLn], [COUNT^n], [C^n]: Start with 1 and increment by 1 .
• [C^nA]: Start with “A” and increment alphabetically.
• [C^na]: Start with “a” and increment alphabetically.

The Counters are reset to their starting values by [/TABLEn], [END/n],
[/n], [/nA], or [/na], [/ROWn], [/RESET^n], [/Rn], [R^A], and [/R^a]. If
a Counter reset is not encountered, the Counter continues increment-
ing until the end of the file.

Commands and Definitions / 42

COUNTER TOKENS (continued)

[ROWn], [HOLD^n], [H^n], [H^nA], [H^na]

Definition:
The row or hold Counter Token is never used in the Top line of a rule.
The Template Editor “beeps” when attempting to put a Counter in the
Top line.

A row or hold Counter Token in a Bottom line rule writes the current
count into the output document.

The Counter is incremented (by the value defined in COUNTER file)
whenever a [/ROWn], [R^n], [R^nA], [R^na], or [RESET^n] is encoun-
tered in the Bottom line of a rule that is fulfilled.

The Counter is reset to the starting value defined in the COUNTER file
whenever its corresponding [/TABLEn], [/n], [/nA], [/na], or [END/n]
is encountered in the Bottom line of a rule that is fulfilled.

See Chapter 10 of the Template Designer’s Guide for a complete discus-
sion of counters.

Exam ples:
Example 1: In this example, hold and count Counters are used to as-
sign numbers to text in a column. When the text string “ LEVEL” is en-
countered, the hold Counter is incremented by one, and the count
Counter is reset to its starting value. When the text string “ ” is encoun-
tered, both Counters are reset to their starting values and two hard
new line codes are written into the output document.

Current Next
Element Element

body body
[TeXt + #][HNL]

10 <list>[HOLD^1](.)[COUNT^1][^][TeXt + #][HNL]

body body

(<NEW^LEVEL>)[HNL]+

10 [RESET^1]

body body

(<END>)[HNL]+

10 [END/1][HNL][HNL]

Notes:
The starting count and increment values for the Counter are defined in
COUNTER file. See Chapter 10 of the Template Designer’s Guide for a
complete discussion of counters.

43 \ TagWrite: Command Reference, Part 2

COUNTER TOKENS (continued)

[/ROWn], [RESET^n], [R^n], [R^nA], [R^na]

Definition:
The end of row or reset Counter Token is never used in the Top line of a
rule.

An end of row or reset Counter Token located on the Bottom line of a
rule increments the [ROWn], [HOLD^n] [H^n], [H^nA], or [H^na]
Counter by the increment value specified in the COUNTER file and re-
sets the [COLn], [COUNT^n], [C^n], [C^nA], or [C^na] Counter to the
Counter’s starting value as defined in the COUNTER file.

Exam ple:
In the following example, hold and count Counters are used to assign
numbers to text in a column. When “ LEVEL” is encountered, the hold
Counter is incremented by one and the count Counter is reset to its
starting value.

Current Next
Element Element

0 body body
[TeXt + #][HNL]

10 <list>[HOLD^1](.)[COUNT^1][^][TeXt + #][HNL]

0 body body

(<NEW LEVEL>)[HNL]+

10 [RESET^1]

Notes:
The starting count and increment values for the Counter are defined in
the COUNTER file.

Commands and Definitions / 44

COUNTER TOKENS (continued)

[/TABLEn], [END/n], [/n] [/nA], [/na]

Definition:
The end of table, or end count, Counter Token is never used in the Top
line of a rule.

An end of table, or end count, Counter Token located in the Bottom line
of a rule resets the related Counter to its starting value as defined in
COUNTER file.

Exam ple:
In the following example, hold and count Counters are used to assign
numbers to text in a column. When the text string “ LEVEL” is encoun-
tered, the hold Counter is incremented by one and the count Counter
is reset to its starting value. When the text string “ ” is encountered,
both Counters are reset to their starting values and two {hard new line}
codes are written to the output document.

Current Next
Element Element

0 body body
[TeXt + #][HNL]

10 <list>[HOLD^1](.)[COUNT^1][^][TeXt + #][HNL]

0 body body

(<NEW LEVEL>)[HNL]+

10 [RESET^1]

0 body body

(<END>)[HNL]

[END/1][HNL][HNL]

Notes:
The starting count and increment values for each Counter are defined
in COUNTER file. See Chapter 10 of the Template Designer’s Guide for
more information on defining and operating Counters.

45 \ TagWrite: Command Reference, Part 2

[CR][LF]

Definition:
Used ONLY with straight ASCII files. Do not use in the Bottom line if
you are writing a file from ASCII to WordPerfect or RTF.

The combination of the [CR] and [LF] Tokens in the Top line of a rule
captures the occurrence of the {carriage return} {line feed} codes in the
input document.

The combination of the [CR] and [LF] Tokens in the Bottom line of a
rule inserts the {carriage return} {line feed} codes into the output docu-
ment.

Caution: The [CR][LF] combination is not the same as a [HNL] Token.

WordPerfect and Microsoft RTF each use their own, single code in
place of the {carriage return}{line feed} combination. This single code is
represented by the TagWrite [HNL] Token.

When working on an ASCII to ASCII TagWrite application, you use
[CR][LF]. When working ASCII to WordPerfect or RTF, or WordPerfect or
RTF to ASCII, you use [HNL]. TagWrite knows how to prepare the text
file for movement between ASCII and WordPerfect or RTF.

Starts:
None

Stops:
All Supertokens

Notes:
Please make a note of these four crucial points:

1. In most ASCII to ASCII applications, a {carriage return} code is almost
always used in combination with a {line feed} code. These two codes in
combination are known as a Carriage Return/Line Feed combination,
or 0D 0A combination. The {carriage return} code is represented by the
Token [CR]. The {line feed} code is represented by the Token [LF].

2. In instances where you wish to use frequency indicators with the
[CR][LF] tokens to capture multiple occurrences of the {carriage re-
turn}{line feed} combination, you must place the [CR][LF] tokens in pa-
rentheses

([CR][LF])+

3. Even though the [CR][LF] tokens appear on one line in the CODES col-
umn of the Template Editor, they are individual Tokens and must al-
ways be treated as two individual Tokens. The appearance of [CR][LF]
on one line in the CODES column of the Template Editor is made avail-
able for your convenience because [CR] and [LF] tend to be used to-
gether in ASCII to ASCII applications.

4. One or more {carriage return}{line feed} combinations stop every Super-
token in the release version of TagWrite 3.0. It is very important to un-
derstand that although a {carriage return}{line feed} combination stops
the Supertoken, the {carriage return}{line feed} combination itself is not

Commands and Definitions / 46

captured by the Supertoken. This means that after the Supertoken
stops, you must intentionally capture {carriage return}{line feed} codes
with the [CR][LF] Tokens in combination.

Exam ples:

Exam ple 1
In the following example, one or more {carriage return}{line feed} combi-
nations between paragraphs in the input document are captured in the
Top line of the rule by the [CR][LF] tokens, and are replaced by a single
{carriage return}{line feed} combination in the bottom line of a rule. The
Top line of this rule is fulfilled by any paragraph which begins with an
alphanumeric or punctuation character and ends with one or more
{carriage return}{line feed} combinations. The Bottom line writes back a
tagged paragraph and only one [CR][LF] combination to the new file. All
extra {carriage return}{line feed} combinations from the original file are
filtered out.

Current Next
Element Element

1 body body
[TeXt + #]([CR][LF])+

10 <para>[TeXt + #][CR][LF]

Exam ple 2
To capture a paragraph ending with a specific number of {carriage re-
turn}{line feed} combinations, place the desired number of [CR][LF] To-
kens, within parentheses, at the end of the Top rule. The following rule
looks for a text paragraph followed by two or more {carriage return}{line
feed} combinations, and writes back a paragraph tagged as “agname”
and one [CR][LF] combination.

Current Next
Element Element

1 body body
[TeXt + #] ([CR][LF])([CR][LF])+

10 <tagname>[TeXt + #][CR][LF]

Exam ple 3
To write a specific number of {carriage return}{line feed} combinations
to the output document, place the desired number of [CR][LF] tokens
at the end of the Bottom line. In the following example, all {carriage re-
turn}{line feed} combinations at the end of the text paragraph are cap-
tured, and three {carriage return}{line feed} combinations are written to
the output document. This example also illustrates that you can
search for the tagname “agname” in the Top line followed by a text para-
graph and one or more {carriage return}{line feed} combinations, and

47 \ TagWrite: Command Reference, Part 2

write back the text paragraph followed by three {carriage return}{line
feed} combinations.

Current Next
Element Element

1 body body
<tagname>[TeXt + #] ([CR][LF])([CR][LF])+

10 [TeXt + #][CR][LF][CR][LF][CR][LF]

Exam ple 4
To eliminate extra {carriage return}{line feed} combinations that were
accidentally keyentered into the input document by the typist, use the
following rule with a blank Bottom line:

Current Next
Element Element

1 body body
([CR][LF])+

10

Rem inders:
1. When you move from ASCII to WordPerfect or RTF format, treat your

Template as if it were built for WordPerfect or RTF as appropriate and
use [HNL].

When going from ASCII to WordPerfect or RTF, TagWrite, through the
“Options” and “With header” menu, automatically handles {carriage re-
turn} or {line feed} codes to prepare the ASCII file for importation into
either WordPerfect or RTF.

2. Likewise, when going from RTF or WordPerfect to ASCII using the Tag-
Write “Save File In ASCII” option, use [HNL]

Do not use [CR][LF] in the Template when going from WordPerfect or
RTF to ASCII. TagWrite automatically saves your file in correct ASCII
format.

3. Control of [CR][LF] combinations can be critical for using TagWrite to go
from an ASCII file to an ASCII file.

ASCII to ASCII For Typesetting Software
In ASCII applications, most typesetting software recognizes the end of
a paragraph by the presence of either one or no more than two {car-
riage return}{line feed} combinations. Spacing above and below a para-
graph usually is determined in the typesetting software as a property of
the tag name.

Most typesetting software, therefore, requires either one or no more
than two {carriage return}{line feed} combinations at the end of a para-
graph. Most importantly, the presence of additional or unexpected {car-

Commands and Definitions / 48

riage return}{line feed} combinations can sometimes cause inter-para-
graph spacing errors during typesetting.

Most TagWrite tagging rules, therefore, will be written to return, in the
Bottom Line, the number of {carriage return}{line feed} combinations
specified by the typesetting software.

Untagging in ASCII to ASCII form at
Untagging presents the reverse situation. Most ASCII documents in
their draft form use two {carriage return}{line feed} combinations at the
end of a paragraph. TagWrite untagging rules that reformat a tagged
file into an untagged, ASCII file will usually include two {carriage re-
turn}{line feed} combinations in the Bottom rule.

Using [CR] and [LF] individually
There may be times when you receive non-standard ASCII files (such
as files from mainframes) which do not contain the {carriage re-
turn}{line feed} combination, but only individual occurrences of either
the {carriage return} or the {line feed}. The [CR] and [LF] tokens appear
individually in the CODES column of the TagWrite Template Editor for
instances when you need to use them separately.

49 \ TagWrite: Command Reference, Part 2

[DULIN], [DULINOFF] (double underline)

Definition
Double underline is a character format supported in WordPerfect and
Microsoft Word (RTF).

Caution: Because {double underline} is not often used, it is Insig-
nificant in TagWrite. Significance and Insignificance are technical
terms in TagWrite explained in detail in Chapter 6 of the Template
Designer’s Guide. It is subject to insignificant character drop-off
under certain circumstances. This can be avoided with Top line
rules or by making [DULIN] significant in the Settings file.

A [DULIN] Token in the Top line of a rule captures the occurrence of a
{double underline on} code in the input document.

A [DULIN] Token in the Bottom line of a rule inserts a {double under-
line on} code into the output document.

A [DULINOFF] Token in the Top line of a rule captures the occurrence
of a {double underline off} code in the input document.

A [DULINOFF] Token in the Bottom line of a rule adds a {double under-
line off} code to the output document.

Starts:
[TeXt + #], [KEEP], [CF], [CF + PF]

Stops:
[STab], [TxT/all], [FILTxT], [PF]

Exam ples:

Exam ple 1
You can use the [DULIN] Token to strip unneeded double underline for-
matting codes from the document. In the following example, [DULIN] is
included in the Top rule, but omitted from the Bottom rule. This tech-
nique effectively drops the double underline from the file created by
TagWrite.

Current Next
Element Element

body body
[DULIN]*[TeXt + #][HNL]

10 [TeXt + #][HNL]

Commands and Definitions / 50

Exam ple 2
You can use the [CF]* Supertoken in the Top rule to strip formatting
codes from the input document. In the Bottom rule, you can write back
{double underline}, the desired text, and {double underline off}. This
technique allows selective output of double underline in the file created
by TagWrite.

Current Next
Element Element

body body
[CF]*[TeXt + #][HNL]

10 [DULIN][TeXt + #][DULINOFF][HNL]

Notes:
Since [TeXt + #] is started by the {double underline} on and off code, a
{double underline} code at the beginning of a paragraph will trigger it.
In fact, the {double underline on} code will be the first character cap-
tured by [TeXt + #]. If the [TeXt + #] Supertoken is then written back in
the Bottom line, the {underline on} code will be retained and written to
the new document. If you want to trap and remove the {double under-
line on} code, you must use the [DULIN] Token (or the [CF] Supertoken)
before [TeXt + #] in the Top line of the rule. The Top rule of Examples 1
and 2 illustrate the trapping technique.

51 \ TagWrite: Command Reference, Part 2

[ENDNOTE] (WordPerfect only)

Starts:
None

Stops:
[FILTxT], [CF], [PF], [CF+PF]

A “endnote”, for the purposes of this discussion, is text entered using
the endnote utility in WordPerfect.

Note: Internally, Microsoft Word uses endnote and footnote inter-
changeably with display determined by menu choice. The [END-
NOTE] Token is not used with Microsoft Word (RTF) applications.

In WordPerfect, Endnote text is not an actual, integrated part of the
text paragraph to which the endnote is attached. The text of the end-
note is contained within special format codes within WordPerfect. Tag-
Write uses special Template techniques featuring the [ENDNOTE]
Token to capture and write endnote text.

Use of the [ENDNOTE] Token is explained in detail in the WordPerfect
section of Chapter 8 of of the Template Designer’s Guide.

Note:
[FILTxT] is stopped by the WordPerfect {endnote] format. You can,
therefore, add [ENDNOTE] to your “filtxt” intraparagraph tagging Ele-
ment. The endnote rule in the “filtxt” Element acts the same as rules
for bold, italic, underline, index and others that might be handled as in-
traparagraph tagging.

For a more complete example of the use of [FILTxT], see the first sec-
tion of the chapter titled “Advanced Template Techniques”

Commands and Definitions / 52

FIELDS (RTF only)
[FLD], [FLDINST], [FLDRSLT]

RTF only

Definition:
A field is a unique kind of RTF known group. Fields are special format-
ting instructions particular to Microsoft RTF files. Fields allow the in-
sertion of variable information, such as date, time, and author, into a
file. Their uses can be extremely complex; for example, if your RTF
word processor supports Windows Dynamic Data Exchange, the DDE
information which points to a linked file will be stored as a field in the
RTF source file.

A field is composed of three separate known groups: Field, Field In-
struction, and Field Result. The field group is the main group which
contains the field instruction and the field result. The field instruction
group contains the instruction or command which controls the word
processor. The field result group contains the text and/or formatting
information which is the result of the field. In some instances (auto
numbering in Word for Windows; certain kinds of DDE links) the field
result will be blank.

Exam ples:
The RTF “date" field inserts the current date into the file. This field
group would appear in the RTF file as follows:

{\field{*\fldinst date }{\fldrslt 11/20/91}}

The following rule would serve to tag the date text:

5 body
[FLD][FLDINST](date)[/GRP][FLDRSLT][GRPTxT]
[/GRP][/GRP]

20 <date>[GRPTxT]</date>

Notice the multiple use of the [/GRP] Token. The first instance closes
the field instruction group; the second instance closes the field result
group; and the final instance closes the entire field group. It is very
critical to match each group with its end group Token.

Also notice that the [GRPTxT] Supertoken is used to pick up the text of
the field result, while a parenthetical search expression is used to pick
up the field instruction. Remember that a Supertoken can not be used
twice in the top line of a rule if it will be written back in the bottom line.
If your field instructions are too complex to retrieve with parenthetical
text string searches, it may be useful to create a second Supertoken for
group text, perhaps named [GRPTxT2].

53 \ TagWrite: Command Reference, Part 2

The [GRPTxT] Supertoken is described in detail on page of this “Com-
mand Reference.” The [/GRP] Token is described in detail on page .

This final example demonstrates a search for legal-style autonumber-
ing at the opening of a paragraph in a Microsoft Word for Windows RTF
file. The field group appears in the RTF file as:

{\field{*\fldinst autonumlgl }{\fldrslt }}

And the Template rule:

5 body
[FLD][FLDINST](autonumlgl)[/GRP][FLDRSLT]
[/GRP][/GRP][TeXt+#][HNL]+

20 <legalnum>[TeXt+#][HNL]

If you wish to write Template rules that work with fields, it is strongly
recommended that you acquire a copy of the Microsoft Word Technical
Reference. That book provides a chapter which explains the function of
each field instruction used in Microsoft Products. It also explains in de-
tail the syntax of RTF files.

Commands and Definitions / 54

[FILTxT]

Definition:
“FILTxT” stands for filter text from character formatting.

[FILTxT] is always used in a looping Element arrangement – either an
Element that loops within itself (with appropriate Escape Rules) or Ele-
ments that loop between each other.

[FILTxT] is used to isolate and identify intra-paragraph character for-
matting (bold, italic and so forth) of text that may start or be within a
paragraph. It also can be configured to identify {index} codes within
paragraphs.

[FILTxT] also is used in the table tagging rules illustrated in Chapter 9
of the Template Designer’s Guide.

A [FILTxT] Supertoken in the Top line of a rule captures text until the
Supertoken encounters a character format listed below.

A [FILTxT] Supertoken in the Bottom rule writes back the text that has
been captured, but does not write back the word processing character
format code that stops the Supertoken.

Started by:
Any alphanumeric character and all punctuation.

Stopped by:
Stopped by virtually all character format codes on and off; table to-
kens; some paragraph format tokens, DDE or Link; RTF fields: Any of
these codes: {bold on}, {underline on}, {italics on}, {strikethrough on},
{small caps on}, {bold off}, {underline off}, {italics off}, {small caps off},
{strikethrough off}, {tab}, {1st line indent}, {center}, {carriage re-
turn/linefeed}, {field instruction}, {field result}, {field start}, {end group},
{flushright}, {footnote start}, {hanging indent}, {hidden text on}, {hidden
text off}, {index}, {indent}, {justification on},{rtf reset}, {rtf plain}, {revi-
sion on}, {revision off}, {right indent}, {tab}, {table of contents}, {upper-
case on}, {uppercase off}, {WP justification}, {table start, table row and
table cell}, {hard new line}.

Code No.:
80000200

Exam ple:
In Chapter 9 of the Template Designer’s Guide, “Advanced Template
Techniques”, the first section on intraparagraph character tagging
carefully describes the use of [FILTxT]. The example in that chapter is
too detailed to restate here.

The second section of Chapter 9 carefully describes the use of [FILTxT]
for tagging cells and rows of tables.

The [FILTxT] Supertoken generally is used under circumstances where
on and off codes delimit text that must be captured and surrounded by

55 \ TagWrite: Command Reference, Part 2

tags or other data. The “filtxt” Element using [FILTxT] captures normal
text; stops when a [FILTxT] stopper word processing code (like {bold}) is
present within a paragraph; moves on to capture the next block of text;
stops when the end delimiter (like {end bold}) is encountered; writes
back the text preceded by a tagname or other information; captures
the closing word processing code; and writes back a closing tagname or
other information.

Properly written, the “filtxt” Element continues to loop and continues
to look for text and character formatting until the paragraph is ended
with a {hard new line} code. The loop will then end allowing TagWrite to
look for the next task posed by the text document.

See first and second sections of Chapter 9 in the Template Designer’s
Guide. Also see the “Preparing a Styles Application” portion of the user
manual supplied with the TagWrite Styles Modules.

Commands and Definitions / 56

[Flush^Rt]

Definition:
A [Flush^Rt] Token in the Top line of a rule captures the occurrence of
a {flush right} command in the input document.

The {flush right} format command in Microsoft Word is sometimes
called “Alignment Right”. In WordPerfect it is sometimes called “Justifi-
cation Right”.

A [Flush^Rt] Token in the Bottom line of a rule inserts the {flush right}
command into the output document.

Starts:
[PF], [CF + PF]

Stops:
[CF], [NO], [STab], [TxT\all], [FILTxT]

Exam ple:
In the following example, the date in a memorandum is identified by
flush right text.

Current Next
Element Element

0 body body
[Flush^Rt][TeXt + #][HNL]+

00 <date>[TeXt + #][HNL]

57 \ TagWrite: Command Reference, Part 2

[FOOTNOTE]

Starts:
None

Stops:
[FILTxT], [CF], [PF], [CF+PF]

A “footnote”, for the purposes of this discussion, is text entered using
the footnote utility in WordPerfect or Microsoft Word.

Footnote text is not an actual, integrated part of the text paragraph to
which the footnote is attached. The text of the footnote is contained
within special format codes within WordPerfect and Microsoft Word.
TagWrite uses special Template techniques featuring the [FOOTNOTE]
Token to capture and write footnote text.

TagWrite requires slightly different techniques when using the [FOOT-
NOTE] Token for WordPerfect or for Microsoft Word.

Use of the [FOOTNOTE] Token is explained in detail in Chapter 8 of the
Template Designer’s Guide. There are separate sections for WordPer-
fect and Microsoft Word.

Note:
[FILTxT] is stopped by the WordPerfect {footnote] format. You can,
therefore, add [FOOTNOTE] to your “filtxt” intraparagraph tagging Ele-
ment. The footnote rule in the “filtxt” Element acts the same as rules
for bold, italic, underline, index and others that might be handled as in-
traparagraph tagging.

For a more complete example of the use of [FILTxT], see the first sec-
tion of Chapter 9 in the Template Designer’s Guide, titled “Advanced
Template Techniques”

Commands and Definitions / 58

[GRPTxT]

RTF Only

The [GRPTxT] Supertoken is for use with RTF only.

Definition
The [GRPTxT] (for “group text”) Supertoken is used in RTF templates in
conjunction with the [ENDNOTE], [INDEX], [TOC], [FLDINST],
[FLDRSLT] and [/GRP] tokens to retrieve text that is inside known
groups in RTF files. The [GRPTxT] Supertoken is for use with RTF only.

The Syntax and Structure of Known Groups
The most common known groups that require the use of the [GRPTxT]
Supertoken are the footnote and index groups. Known groups in RTF
always follow the following syntax:

Group Start Token–Group Text–Group End Token

Where the group start Token is either [ENDNOTE], [INDEX], [TOC],
[FLDINST], or [FLDRSLT]; the group text is captured by the [GRPTxT]
Supertoken; and the group end Token is represented by [/GRP].

Code Num ber:
80000008

Started by:
All alphanumeric and punctuation characters.

Stopped by:
The [/GRP] Token.

Exam ple:
The following example demonstrates a search within a paragraph for
text which has been formatted for automatic generation of footnotes,
indexing and table of contents. After the initial text is found in the body
element, the Template changes to the group element in which rules
search for footnote, index and table of contents groups, as well as bold
or italicized text. When the end of the paragraph is reached, the Tem-
plate returns to the body element.

59 \ TagWrite: Command Reference, Part 2

Current Next
Element Element

1 body group
[TAB][FILTxT]

20 <paratext>[FILTxT]

2 group group

[ENDNOTE][CF+PF]*[GRPTxT][/GRP]

40 <footnote>[GRPTxT]</footnote>

2 group group

[INDEX][CF+PF]*[GRPTxT][/GRP]

40 <index>[GRPTxT]</index>

2 group group

[TOC][CF+PF]*[GRPTxT][/GRP]

40 <toc>[GRPTxT]</toc>

2 group group

[BLD]

40 <bold>

2 group group

[ITAL]

40 <italic>

2 group group

([BLDOFF]|[ITALOFF])

40 <normal>

3 group group

[FILTxT]

30 [FILTxT]

4 group body

[HNL]+

20 [HNL]

Commands and Definitions / 60

[/GRP]

RTF only.

The [/GRP] token is for use with RTF only.

Definition:
The {end group} Token is used in RTF templates only to indicate the
end of an RTF known group. It is used in conjunction with the [END-
NOTE], [INDEX], [TOC], [FLDINST],and [FLDRSLT] tokens and the
[GRPTxT] Supertoken to tag text which has been formatted for auto-
matic generation of footnotes, indexes, and tables of contents in RTF
word processors. [/GRP] is the only Token which ends the [GRPTxT]
Supertoken.

Starts:
None

Stops:
[GRPTxT]

Exam ple:
For complete examples on the use of [/GRP] see the examples given
above under [GRPTxT] and [ENDNOTE].

61 \ TagWrite: Command Reference, Part 2

[HIDE]

Definition:
Hidden text is indicated in RTF by the control word \v.

In RTF, hidden text is contained in the RTF source file but the hidden
text neither displays on screen nor prints.

In TagWrite, hidden text is considered to be a Character Format and,
with one exception, it is handled the same as [BOLD].

The exception is that hidden text is Insignificant.

Caution: [INDEX] captures index markers in the document. Index
markers are hidden text. Hidden text must be insignificant in order
for [INDEX] to be captured by the Template.

Commands and Definitions / 62

[HNL]

Definition:
The hard new line Token is used to represent the word processor {hard
new line} which is entered into a word processed file by pressing the
<Enter> key.

A [HNL] Token in the Top line of a rule captures the occurrence of a
{hard new line} code in the input document.

A [HNL] Token in the Bottom line of a rule inserts the {hard new line}
code into the output document.

Starts:
None

Stops:
All TagWrite pre-configured Supertokens are stopped by [HNL].

Note: You can make a Supertoken that is not stopped by [HNL].
There is no requirement to stop a Supertoken with [HNL].

Notes:
One or more {hard new line} codes stop every Supertoken in the release
version of TagWrite 3.0. It is very important to understand that al-
though a {hard new line} code stops the Supertoken, the {hard new line}
code itself is not captured by the Supertoken. This means that after the
Supertoken stops, you must intentionally capture {hard new line}
codes with a [HNL] Token.

Exam ples:

Exam ple 1
In the following example, one or more {hard new line} codes between
paragraphs in the input document are captured in the Top line of the
rule by the [HNL]+ codes, and are replaced by a single {hard new line}
code in the Bottom line of a rule. The Top line of this rule is fulfilled by
any paragraph which begins with a text or number character and ends
with one or more {hard new line} codes. The Bottom line writes the
paragraph and only one [HNL] to the new file. All extra {hard new line}
codes from the original file are filtered out.

Current Next
Element Element

body body
[TeXt + #][HNL]+

10 [TeXt + #][HNL]

63 \ TagWrite: Command Reference, Part 2

Exam ple 2
To capture a paragraph ending with a specific number of {hard new
line} codes, place the desired number of [HNL] Tokens at the end of the
Top rule.

Current Next
Element Element

body body
[TeXt + #][HNL][HNL]

10 [TeXt + #][HNL]

Exam ple 3
To write a specific number of {hard new line} codes to the output docu-
ment, place the desired number of [HNL] Tokens at the end of the Bot-
tom line. In the following example, all {hard new line}s at the end of the
text paragraph are captured, and three {hard new line} codes are writ-
ten to the output document by placing three [HNL] Tokens at the end of
the Bottom line of the rule.

Current Next
Element Element

body body
[TeXt + #][HNL]+

10 [TeXt + #][HNL][HNL][HNL]

Exam ple 4
To eliminate extra {hard new line} codes that were accidentally keyen-
tered into the input document by the typist, use the following rule with
a blank Bottom line:

Current Next
Element Element

body body
[HNL]+

1

Most robust Templates will contain some form of [HNL] cleanout rule
in each Element.

See also the discussion on the “Cleanup Escape Rule” in Chapter 10 of
the Template Designer’s Guide.

Commands and Definitions / 64

Notes:
Control of {hard new line} can be critical for tagging and untagging:

1. Generally, SGML applications do not take account of hard new lines.
However, for the sake of clarity if the SGML file is to be read and for the
sake of certainty if the SGML file is to be untagged and reformatted, it
is generally sound policy to separate paragraphs by hard new lines.
This means that if the original document is prepared in WordPerfect or
Microsoft Word and processed in TagWrite, the TagWrite [HNL] Token
will give proper paragraph separation, and TagWrite “Save File As AS-
CII” will transform the [HNL] into [CR][LF] combinations.

2. Tagging for typesetting. Most typesetting software recognizes the end of
a “paragraph” by the presence of a {hard new line}. Generally, the para-
graph is tagged and treated as a single typographical entity. Spacing
above and below a paragraph usually is determined in the typesetting
software as a property of the tag name.

Most typesetting software, therefore, requires only one {hard new line}
at the end of a paragraph. Indeed, the presence of more than one {hard
new line} can sometimes cause inter-paragraph spacing errors during
typesetting. Most TagWrite tagging rules, therefore, are written to re-
turn one [HNL] in the Bottom line. Although there will be occasions
where more than one [HNL] will be written to a Bottom rule, generally,
it is best to control inter-paragraph spacing using the tools provided by
the typesetting software. It is generally not a good policy to try to con-
trol inter-paragraph spacing with {hard new line} codes.

3. Untagging presents the reverse situation. Most word processed docu-
ments use two {hard new lines} at the end of a paragraph. TagWrite un-
tagging rules that reformat a tagged file into an untagged, word
processed format will usually include two {hard new lines} in the Bot-
tom rule.

ASCII And The Difference Between [HNL]
and [CR][LF]
If you are working with ASCII files, it is very important to understand
the difference between [HNL] and [CR][LF]. The difference is discussed
fully in the discussion on [CR][LF] earlier in this Chapter.

Difference Between “line break” and [HNL].
In Microsoft Word, a {hard new line} is differentiated from a {line break}.
A {line break} code terminates text on a line before the right margin and
breaks the line, but does not terminate the paragraph or the paragraph
formatting. The {line break} code, therefore, is not the same as the
{hard new line} code which creates a new paragraph. The {line break}
code is not supported by a preset Token or Supertoken.

If you want to support {line break} with a Supertoken, you should treat
it as an intraparagraph format as explained in the section on [FILTxT].

65 \ TagWrite: Command Reference, Part 2

[HPg]

Definition:
A [HPg] Token in the Top line of a rule captures the occurrence of a
{hard page break} code in the input document.

A [HPg] Token in the Bottom line of a rule inserts the {hard page break}
code into the output document.

Starts:
None

Stops:
None

Exam ple:
{hard page break} codes are inserted into documents to signify major
changes – such as a new chapter, to control strict paging of the text, or
for other reasons. For example, {hard page break} is often used as a
field delimiter for data base structures.

The following example illustrates a fragment of a Template where {hard
page break} causes the end of a chapter in a word processed file.

The “body” Element’s Top line rule searches for and captures a {hard
page break} code. When the Top rule is fulfilled, the Bottom returns a
hard page break tag and a [HNL]. TagWrite then branches to the “chap”
Element. Its Top line rule then searches for a centered chapter head-
ing.

Current Next
Element Element

body chap
[HPg]

5 <hard^page>[HNL]

chap chap

[CENTER][TeXt + #][HNL]+

10 <chaptitle>[TeXt + #][HNL]

Commands and Definitions / 66

[H^]

Definition:
A [H^] Token in the Top line of a rule captures the occurrence of a hard
space in the input document.

A [H^] Token in the Bottom line of a rule inserts a hard space into the
output document.

Starts:
[TeXt + #], [FILTxT], [KEEP], [<TeXt>]

Stops:
[NO], [STab], [CF], [TxT/all], [PF], [CF + PF]

Notes:
The hard space code is not standard ASCII and, therefore, is a unique
word processing format code. You must use the [H^] Token in the Tem-
plate Editor to control a {hard space} code in the Top or Bottom line of a
rule.

[H^] is not a trivial Token. There are a number of clever ways to use it.
For example, in TagWrite version 3.0, the {hard space} code is set to
start the Supertoken [TeXt + #].

There is a good use for this when using TagWrite to auto tag the data
collected using “fill in the blank” word processing macros (data entry
word processing applications). If a {hard space} code is present as the
first character in the answer form, it will be invisible on screen, but
digitally present. If the “fill in the blank” line is not filled in by the user,
the [TeXt + #] Supertoken will still be fulfilled. This will allow the
“blank” line to be tagged correctly because even if the user did not fill in
the blank, it may be important for that data structure to be tagged.

Specifically, if the macro asks the user to fill in a telephone number,
but the telephone number is omitted, the Top rule still will be fulfilled
when it encounters the {hard space} code. The Bottom rule will return
the word “Telephone:”, and the [TeXt + #] Supertoken which contains
the {hard space} code. The typeset copy will show the word “Tele-
phone:” and blank space where the telephone number should be.

67 \ TagWrite: Command Reference, Part 2

[INDEX]

RTF Only

See the note at the end of this section on capturing index using Word-
Perfect.

Definition:
The [INDEX] Token is used in RTF templates only to search for text in-
serted within an RTF index group for purposes of auto-indexing. The
[INDEX] Token, when used correctly, enables you to capture text which
has been marked for indexing and insert that text within descriptive
tags suitable for your document publishing system or SGML. For infor-
mation about indexing text with your RTF word processing software,
consult your word processor’s technical documentation.

Starts:
None

Stops:
[FILTxT], [CF], [PF], [CF+PF]

Exam ples:
The [INDEX] Token represents the start of the RTF index group, and
must be used in conjunction with the Supertoken [GRPTxT] and the To-
ken [/GRP]. In the following example, [FILTxT] is used in the body ele-
ment. When an [INDEX] Token is encountered, the Template changes
to the “index” element, where it searches for the text which has been
marked for indexing within a paragraph. When the end of the para-
graph is reached, the Template returns to the body element:

Current Next
Element Element

1 body filtxt
[FILTxT]

20 <para>[FILTxT]

2 filtxt filtxt

[INDEX][CF+PF]*[GRPTxT][/GRP]+

40 <indextag>[GRPTxT]</indextag>

3 filtxt filtxt

[FILTxT]

30 [FILTxT]

4 filtxt body

[HNL]+

20 [HNL]

Commands and Definitions / 68

Note On Index and WordPerfect:
TagWrite does not capture WordPerfect index delimiters or its text.
When a WordPerfect file is saved as ASCII using either the TagWrite or
WordPerfect “Save As ASCII” utility, the index information is lost.

You can use a word processing code like {underline} or in place of the
word processor’s index code if you do not need to generate an actual in-
dex in the word processor but do need to tag the text file with index
codes. Underlining text that is to be indexed is much easier than trying
manually to insert specific start and stop index codes.

To use {underline} as the index marker, set-up the rule as follows: In
the filtxt Element, add a TOP rule that looks for the {underline} word
processor code. By picking up underline, you can return the index tag.

9 filtxt filtxt

[ULIN]

4 <index_start>

10 filtxt filtxt

[ULINOFF]

3 <index_end>

69 \ TagWrite: Command Reference, Part 2

[INDT]

Definition:
An [INDT] Token in the Top line of a rule captures the occurrence of a
{left indent} command in the input document.

An [INDT] Token in the Bottom line of a rule inserts the {left indent}
code into the output document.

Starts:
[PF], [CF + PF], [KEEP]

Stops:
[CF], [NO], [STab], [TxT/all], [FILTxT]

Exam ples:

Exam ple 1
The {indent} word processing format code is often used to indicate a
“stepped” or “indented” paragraph. An indented paragraph is one
where the first line and all subsequent lines are indented. “Steps” are
commonly used in technical manuals and other publications to form
paragraph lists. A first level step is often indicated by one word proces-
sor indent; a second level step is indicated by two indents, and so forth.
The following example, demonstrates rules for three levels of steps.

1 body body

[CF]*[INDT][TeXt +#] [HNL]+

10 <step1>[TeXt +#] [HNL]

2 body body

[CF]*[INDT] [INDT][TeXt + #][HNL]+

9 <step2>[TeXt +#] [HNL]

0 body

[CF]*[INDT] [INDT][INDT][TeXt + #][HNL]+

8 <step3>[TeXt + #][HNL]

Commands and Definitions / 70

Exam ple 2
For bulleted lists, we suggest using an {indent} code followed by an as-
terisk in the word processed file to indicate that you want to tag the
paragraph as a bulleted list. See the following Template rules.

1 body body
[CF]*[INDT] (’*’) [TeXt +#] [HNL]+

10 <bullet>[TeXt +#] [HNL]

Note the use of single quotes and parentheses. In the example, the as-
terisk is enclosed in single quotes because it is text and not a Fre-
quency Indicator.

Exam ple 3
A more robust version of this rule could be written as follows:

1 body body
[CF]*[INDT] (’*’)+[TeXt +#] [HNL]+

10 <bullet>[TeXt +#] [HNL]

By enclosing the asterisk in single quotes, we treat the asterisk as text.
By enclosing the entire quote mark and asterisk expression in paren-
theses like this (’ * ’) we can use a frequency indicator after the entire
expression. In the Template example above, the plus sign Frequency In-
dicator causes the Top rule to search for one or more occurrences of
the asterisk as a text character. Although the key entry convention
may call for a bulleted list to be entered with one asterisk, we are ac-
counting for the possibility that the typist has made an error and used
two asterisks.

Notes:
The [INDT] Token represents a {left indent} code only. TagWrite treats
{left and right indent} codes as insignificant. You can build a Token for
{left and right indent} although it is rather exotic. As always, it would
be better to keep your applications as simple as possible.

71 \ TagWrite: Command Reference, Part 2

[ITAL]

Definition:
An [ITAL] Token in the Top line of a rule captures the occurrence of an
{italics on} code in the input document.

An [ITAL] Token in the Bottom line of a rule inserts an {italics on} code
into the output document.

Starts:
[TeXt + #], [KEEP], [CF]. [CF + PF]

Stops:
[FILTxT], [TxT/all], [STab], [PF]

In general you use the [ITAL] (italics on) Token in the same manner as
[BLD] (bold on).

Exam ple:
You can use the [ITAL] Token to strip unneeded italics formatting codes
from the document. In the following example, [ITAL] is included in the
Top rule, but omitted in the Bottom rule. This technique effectively
drops the {italics on} code from the new document:

Current Next
Element Element

0 body body
 [ITAL] * [TeXt + #][HNL]

10 [TeXt + #][HNL]

Since [TeXt + #] is started by the {italics on} code, an italics format code
at the beginning of a paragraph will trigger it. In fact, the {italics on}
code will be the first character captured by [TeXt + #]. If the [TeXt + #]
Supertoken is then written back in the Bottom line, the {italics on} code
will be retained and written to the new document. If you want to trap
and remove the {italics on} code, then, as in the example above, you
must use the [ITAL] Token (or the [CF] Supertoken) before [TeXt + #] in
the Top line of the rule.

The [ITAL] and [ITALOFF] Tokens may be used in conjunction with the
[FILTxT] Supertoken to capture character formatting within a para-
graph. [FILTxT] is described at the beginning of Chapter 10 of the Tem-
plate Designer’s Guide.

Commands and Definitions / 72

[ITALOFF]

Definition:
An [ITALOFF] Token in the Top line of a rule captures the occurrence of
an {italics off} code in the input document.

An [ITALOFF] Token in the Bottom line of a rule inserts an {italics off}
code into the output document.

Starts:
None

Stops:
[FILTxT], [STab], [TxT/off], [PF]

Notes:
Caution: Do not use [ITALOFF] in the Bottom rule unless it is pre-
ceded somewhere in the rule by [ITAL] (on). Some word processors
balk at the presence of an “off” code without a prior “on” code.

The [ITAL] and [ITALOFF] Tokens may be combined with the [FILTxT]
Supertoken to capture paragraph or character formatting within a
paragraph.

73 \ TagWrite: Command Reference, Part 2

[JUST] (RTF Only)
RTF allows a justify format command. Justification means that text
aligns evenly at the left and right margins of the page.

The TagWrite [JUST] Token captures the occurrence of {justification
on} at the start of a paragraph.

Starts:
[PF], [PF+CF]

Stops:
[FILTxT]

Notes:
[JUST] is set to be insignificant, thus, within the Element, it must be
scored higher than any rule started by a Significant Token or by a Su-
pertoken.

The [JUST] Token is supported for Microsoft Word (RTF) only. WordPer-
fect justification {full justify} is considered to be a default by TagWrite.
The [JUST] Token does not capture WordPerfect {full justify}

Commands and Definitions / 74

[KEEP]

Definition:
A [KEEP] Supertoken in the Top line of a rule captures everything in
the input document except a [HNL], which stops [KEEP].

A [KEEP] Supertoken in the Bottom line of a rule inserts everything
captured by the [KEEP] in the Top line of the rule into the output docu-
ment.

Hex No.:
0x80000010

Started by:
{Tab}, {indent}, {center}, {flush right}, {first line indent}, {bold}, {under-
line}, {italics}, {small caps}, {strikethrough}, and all alphanumeric char-
acters and punctuation.

Stopped by:
{Hard new line} code.

Exam ples:

Exam ple 1
For untagging, the following example shows how to write a rule to un-
tag a file. The Top line of the rule captures a tag name followed by
[KEEP] and at least one [HNL]. The Bottom line of the rule does not re-
turn the tagname. The Bottom does pass everything captured by the
Top line’s [KEEP] and adds two {hard new line} codes to reproduce the
original word processed document. This removes the tagname, but re-
tains all text and format commands contained in the original docu-
ment. Done carefully, you can restore a word processing file to its
exact, original form.

Current Next
Element Element

body body
<para^1>[KEEP][HNL]+

10 [KEEP][HNL][HNL]

Note: Do not use [ALL] to untag a file because [ALL] returns every-
thing in the Top line including the tag name. As shown above, you
can first capture the specific tag name in a parenthetical, alphanu-
meric, expression and then, with [KEEP], capture the rest of the
text up to the {hard new line}. Writing [KEEP] back in the Bottom
line allows you to drop the tag name and insert any additional word
processing format information you desire.

75 \ TagWrite: Command Reference, Part 2

Exam ple 2
In the following example, the [KEEP] Supertoken creates an Escape
Rule for your main “body” Element group. This allows the Template to
preserve text when no valid Template tagging rule applies.

Current Next
Element Element

body body
[KEEP][HNL]+

0 [KEEP][HNL]

If no rule in the Template is fulfilled, this [KEEP] Escape Rule captures
all characters and commands, and then writes them to the output
document. The errant paragraph is not tagged, but it is retained. The
Escape Rule prevents TagWrite from slowing down when it finds a para-
graph for which there is no Template rule.

Note the 0 zero score assigned to the escape rule and read about its im-
portance below.

Caution: The [KEEP] Escape Rule is designed only for the main or
“body” Element of your Template. Do not use the [KEEP] Escape
Rule in sub-Elements of your Template because you will create a
rule that loops to the end of file or which exits the sub-Element pre-
maturely.

The [KEEP] Escape Rule is discussed thoroughly in “Advanced
Template Techniques”.

Notes:
The [KEEP] Escape Rule must be scored zero (00). If [KEEP] is scored
higher than any other rule, [KEEP] will always be fulfilled. In that case,
the file will not be tagged. [KEEP] will simply capture each paragraph
and write it back to disk.

TagWrite will always terminate a tagging operation when it encounters
an end-of-file. That means that there is an overriding escape rule
which will work even when there is no terminating [HNL] (as required
in the example above.) The Bottom line of the active rule will not be exe-
cuted and thus the final paragraph will not be tagged if the text does
not end with an appropriate “Token-stopping” character such as an
[HNL].

If the last paragraph of a document will fulfill neither a tagging rule nor
a [KEEP] rule, check to make sure that the last paragraph is ended by
a {hard new line}. Most rules are written to terminate with a [HNL] To-
ken, but sometimes the typist simply ends the paragraph without a
{hard new line}. In the worst case, you should simply receive a tagging
error, but not experience data loss.

Commands and Definitions / 76

[NO]

Definition:
A [NO] Supertoken in the Top line of a rule captures numbers in the in-
put document. It is especially useful for tagging numbered paragraphs.

A [NO] Supertoken in the Bottom line of a rule inserts the number cap-
tured by the last [NO] in the Top line into the output document.

Code No.:
80000002

Started by:
Numerals 0 through 9

Stopped by:
Any alphabetic character, a period, {space}, {hard space}, {indent},
{flush right}, {first line indent}, {tab}, {center}, and all other punctuation
– except the hyphen and the comma.

W hat Is A “Num ber”?
A “number” in TagWrite is defined as a single digit like 1 or 2 or 3. A
number may also be several digits, such as 123 or 10988. As long as
the number is not broken by a word processing character that ends the
[NO] Token, the size of the number is not relevant. The number 1 is as
valid as the number 198,000,008.

Num ber And The Hyphen
Hyphens neither stop nor start [NO] Supertokens.

You can use this to advantage if you wish to track chapter number and
the paragraph number while typing. Chapter 23, Paragraph 405, for in-
stance, could be written 23-405, and the [NO] Supertoken would con-
sider it just another single number.

Exam ples:
The following example, illustrates how to differentiate and tag text
paragraphs that are numbered in the following way:

1 First paragraph to be tagged <PARA1>

1.1 Second paragraph to be tagged <PARA2>

1.1.1 Third paragraph to be tagged <PARA3>

77 \ TagWrite: Command Reference, Part 2

Current Next
Element Element

0 START body

00

1 body body

[CF+PF]*[NO](.)*[NO](.)*[NO](.)*([^]|[PF])*[TeXt + #][HNL]+

20 <para3>[TeXt + #][HNL]

2 body body

[CF+PF]* [NO](.)* [NO](.)* ([^] | [PF])* [TeXt + #] [HNL]+

19 <para2>[TeXt + #][HNL]

3 body body

[CF+PF]* [NO](.)* ([^] | [PF])* [TeXt + #] [HNL]+

18 <para1>[TeXt + #][HNL]

Notes:
Notice that the [NO] Supertoken can be used more than one time in a
rule. This allows you to capture as many separate numbers as needed.

Most typesetting software and SGML require that paragraph number-
ing in the original document be erased. In SGML and most typesetting,
paragraphs are categorized by level and the level is denoted by the Tag-
name.

If the level is known to the typesetting software, then auto-numbering
utilities based on tag names can be used to number the paragraphs.

By capturing the number with one or more [NO] Tokens, you can
choose not to write back the numbers in the Bottom line. Replace the
captured number with the correct tagname.

The example above also demonstrates how to use a period with [NO] to
distinguish between different levels of numbered paragraphs.

As with all Supertokens, you can not place more than one [NO] Super-
token in the Bottom line of a rule. The number that will be written back
on the Bottom line will be the one captured by the last [NO] Supertoken
on your Top line. This is true because the contents of the [NO] on the
Top are replaced every time the Supertoken’s requirements are met.
Thus, it would not be helpful to use the [NO] Supertoken on the Bottom
line of the first two rules in the above example.

The following example assumes that you are not going to use the auto-
numbering capabilities of your typesetting software. To return to the
actual numbers keyentered by the typist, you would need to use [ALL]
on the Bottom line of every rule. You would also need to eliminate the
plus (+) sign after the [HNL] in the Top line of every rule.

Commands and Definitions / 78

For example:

body body

[CF+PF]*[NO](.)*[NO](.)*[NO](.)*([^]|[PF])*[TeXt + #][HNL]

20 <para3>[ALL]

79 \ TagWrite: Command Reference, Part 2

[PF] Paragraph Format
[PF]* is used by itself when the requirement is to capture para-
graph format codes but not character formatting.

Definition:
A [PF] Supertoken in the Top line of a rule starts with the occurrence of
either the {tab}, {indent}, {center}, {first line indent}, or {flush right} word
processor format codes in the input document without having to spec-
ify which format command to capture.

The [PF] Supertoken continues absorbing all paragraph format infor-
mation until stopped by the Stop tokens listed below.

A [PF] Supertoken in the Bottom line of a rule inserts the format cap-
tured in the Top Rule into the output document.

Code No.:
80000400

Started by:
{tab}, {indent}, {center}, {first line indent}, {flush right} {hanging indent},
{right indent}, {justification}.

Stopped by:
{Space}, {hard space}, {bold}, {underline}, {italic}, {small caps},
{strikethrough}, {hard new line} or any alphanumeric character or
punctuation.

Exam ples:
Example 1: In the following example, the paragraph format Supertoken
captures unwanted format commands in the Top line of a rule. The un-
wanted format commands are deleted from the tagged file by omitting
[PF] from the Bottom line of the rule.

Current Next
Element Element

12 body body
[PF]* [TeXt + #][HNL]

00 [TeXt + #][HNL]

Commands and Definitions / 80

Notes:
1 By using [PF] in the Top rule, the heart of the rule can be fulfilled regard-

less of the occurrence of significant paragraph formatting codes at the
start of the paragraph.

2. It is difficult to predict the placement, kind, and combination of para-
graph format commands in a word processing file. [PF] will capture any
or all paragraph format commands in any order.

[PF]* is almost always used with an asterisk. Most often you use the
[PF]* Supertoken to remove stray paragraph formatting or formatting
that is not critical to making a tagging decision. The very notion of
“stray” implies that you do not know if the paragraph formatting is pre-
sent or not. Thus, by using [PF]* with an asterisk, you can pick up the
stray formatting if it is present, and if it is not present, the main part of
the rule can still be fulfilled.

If you did not use the asterisk, then the [PF] Supertoken would have to
be fulfilled in order for the Rule itself to be fulfilled. This is rarely the in-
tended outcome.

Caution: If you use the asterisk on the Top line of a rule with the
[PF]* Supertoken, then you cannot place the [PF] Supertoken on
the Bottom line of that rule. Remember that the asterisk stands for
“zero or more occurrences.” This means that [PF]* might not be ful-
filled. If a Supertoken is not fulfilled in the Top, you cannot write it
back in the Bottom. TagWrite will malfunction if you try to write an
empty (zero occurrence) Supertoken to the output document.

3. The Supertoken [CF + PF] is separate from [PF] and performs a com-
bined function of the separate [CF] and [PF] Supertokens. [CF + PF] is
often used in Top line rules rather than [CF] or [PF] separately, espe-
cially with rules searching for word processor Styles.

81 \ TagWrite: Command Reference, Part 2

[PLAIN]
Used with RTF only.

Definition
[PLAIN] clears all prior character formatting like {bold}, {italic}, {super-
script} and all others considered by RTF to be a character format. It is a
generic shut off for character formatting that can be used anywhere in
a document to terminate the current character format and return for-
matting to “Normal”.

[PLAIN] restores text to the ”Normal” or default character format that
has been established in the Microsoft Word document.

Used only with templates designed for Microsoft RTF. The TagWrite
[PLAIN] Token is equivalent to the RTF code “\plain”.

[PLAIN] generally is used in each Bottom rule in Templates designed
for RTF.

Explanation:
A Microsoft Word document saved as RTF (or other word processors
that follow the Microsoft standards for writing RTF) is designed so that
every new paragraph either:

• carries the character formatting from the previous paragraph
or carries character formatting from a prior piece of text
unless that formatting has been shut off.

O R

• clears into “plain” formatting (“Normal”) the character display
of each paragraph.

In TagWrite operations, you always have control over the formatting of
each new paragraph. In templates designed for use with RTF, we
strongly recommend that you write Bottom rules that first clear
the pre-existing character formatting. You may then control and cor-
rectly declare the paragraph formatting of your output document.

The character formatting for the current paragraph is declared by:

• Placing a tagname in the Bottom rule. The tagname defines
the character format that should be attached to the text of the
paragraph. (See Example 1 below)

O R

• Placing the appropriate Token in the Bottom line of the Rule
like [BLD] or [ITAL] .

• Placing a stylename Token in the Bottom rule if your version
of TagWrite supports the Style module and your application is
a styled application. The stylename Token defines the
character formatting for the paragraph.

Caution: If you do not use [PLAIN], then the formatting of the pre-
vious paragraph may automatically be attached to the current
paragraph when the output document is saved in RTF.

Commands and Definitions / 82

Starts
none

Stops
none

Exam ples:

Exam ple 1
The following example has a Top rule that simply traps any specific
character formatting, and picks up the text and {hard new lines} associ-
ated with the paragraph.

The Bottom rule uses [RESET] first to clear any prior paragraph format-
ting that may have existed in the input document. The Bottom then
clears any character formatting using [PLAIN]; inserts a tagname and
returns the text of the paragraph and a {hard new line}.

This is an elementary and fundamental example for writing rules for
RTF templates.

Current Next
Element Element

0 body body
[CF]*[TeXt + #][HNL]

00 [RESET][PLAIN]<tagname>][TeXt + #][HNL]

Exam ple 2
Example 2 is almost the same as example 1 except rather than write
back a tagname in the Bottom line, example 2 writes back the charac-
ter format {bold}.

Current Next
Element Element

0 body body
[CF]*[TeXt + #][HNL]

00 [RESET][PLAIN][BLD][TeXt + #][BLDOFF]

Notes:
In Templates designed for RTF, [RESET] followed by [PLAIN] is almost
always used in the Bottom line of a Rule.

[PLAIN] can effectively be used by itself where specific character format-
ting needs to be shut off inside a paragraph or other structure in the
document. [PLAIN] shuts off any character format; therefore, it is a ge-
neric shut off that can be used in RTF Template applications in place
of the specific character format end Token.

83 \ TagWrite: Command Reference, Part 2

[RESET]
Used only with RTF applications.

Definition
Resets paragraph formatting to the default, "normal’ settings.

Used only in the Bottom line rule.

Caution: Do not use [RESET] on Top. The rule will never be ful-
filled.

Used in all paragraph level RTF rules, but not used as part of intra-
paragraph, “filtxt” style rules.

Caution: [RESET] appearing anywhere in a paragraph will cause
the reset of the entire paragraph to the default, “normal” setting. If
you use [RESET] on the Bottom line of intraparagraph tagging,
then the entire paragraph will be reset to the default “normal”.

The TagWrite [RESET] Token is equivalent to the RTF code “\pard”.

[RESET] generally is used in each Bottom rule in Templates designed
for RTF.

Explanation:
A Microsoft Word document saved as RTF (or other word processors
that follow the Microsoft standards for writing RTF) is designed so that
every new paragraph either:

• carries the paragraph formatting from the previous
paragraph. (We call this “subsequent paragraph formatting”)

O R

• “resets” the paragraph formatting of each paragraph before
adding new or default paragraph formatting.

In TagWrite operations, you always have control over the formatting of
each new paragraph. In RTF applications, for each new paragraph, you
first clear the previous formatting with [RESET]. This follows the logic
of native RTF.

In Templates designed for use with RTF, we strongly recommend
that you write Bottom rules that first “resets” the paragraph for-
matting. You may then control and correctly declare the paragraph for-
matting of your output document.

The paragraph formatting is declared by:

• Placing a tagname in the Bottom rule. The tagname defines
the structure of the paragraph. (See Example 1 below)

O R

• Placing the appropriate Token in the Bottom line of the Rule
like [CENTER] or [INDENT] or [TAB]. (See Example 2 below)

O R

Commands and Definitions / 84

• Placing a stylename Token in the Bottom rule if your version
of TagWrite supports the Style module and your application is
a styled application.

If no special formatting is required, that is, if you want the paragraph
to carry the default, “Normal” paragraph level formatting charac-
teristics, then use [RESET] with no additional format information.

Caution: If you do not [RESET] the paragraph formatting, then the
formatting of the previous paragraph may automatically be at-
tached to the current paragraph when the output document is
saved in RTF.

Starts
none

Stops
none

Exam ples:

Exam ple 1
The following example has a Top rule that simply traps any character
formatting, and picks up the text and {hard new lines} associated with
the paragraph.

The Bottom rule uses [RESET] first to clear any prior paragraph format-
ting that may have existed in the input document. The Bottom then
clears any character formatting (using [PLAIN]); inserts a tagname and
returns the text of the paragraph and a {hard new line}.

This is an elementary and fundamental example of writing rules for
RTF templates.

Current Next
Element Element

0 body body
[CF]*[TeXt + #][HNL]

00 [RESET][PLAIN]<tagname>][TeXt + #][HNL]

Exam ple 2
Example 2 is almost the same as example 1 except rather than write
back a tagname in the Bottom line, Example 2 writes back a specific
paragraph format (e.g. {indent})

Current Next
Element Element

0 body body
[CF]*[TeXt + #][HNL]

00 [RESET][PLAIN][INDT][TeXt + #][HNL]

85 \ TagWrite: Command Reference, Part 2

Notes:
[RESET] is almost always followed by [PLAIN]. While [RESET] clears all
prior paragraph formatting, [PLAIN] clears all prior character format-
ting. See the discussion of the [PLAIN] Token in this chapter.

Commands and Definitions / 86

[REVISED], [REVOFF]

Definition
Refers to {revised text} lodged in the input document. Does not refer to
the document revision number. Revised text is text that has been
marked as changed since the last publication. The tokens for Revised
text are for use only in RTF file; WordPerfect does not have a Revised
text token.

The traditional Revision Mark appears as a vertical line in the margin
next to the text that has been revised.

An SGML Document Type Definition or other document standard may
require that you specifically tag Revised text.

The TagWrite Template can be configured to recognize and isolate the
revision code. The TagWrite Template technique will vary according to
the document structure and your tagging needs. You may need to es-
tablish the revision code as part of [FILTxT]. You will also have to estab-
lish a search pattern using [REVISED]* (with an asterisk) as part of the
beginning of a Top line rule.

We do not offer an example here because the application is specific and
will require that you understand your document structure and your ap-
plication.

Some Microsoft Word Products allow you to designate that text has
been revised. [REVISED] and [REVOFF] are not for use in templates for
WordPerfect.

Starts:
none in the release version of TagWrite 3.0

Stops:
none in the release version of TagWrite 3.0

Notes:
To use the revision Tokens to start and stop Supertokens, you must
configure the Settings file for your application. See the Appendix B
which describes how to alter the Settings file.

87 \ TagWrite: Command Reference, Part 2

[SmCAP]

Definition:
A [SmCAP] Token in the Top line of a rule captures the occurrence of a
{small caps on} code in the input document.

A [SmCAP] Token in the Bottom line of a rule inserts a {small caps on}
code into the output document.

Starts:
[TeXt + #], [KEEP], [CF],[CF + PF]

Stops:
[STab], [CF], [FILTxT], [TxT/all], [PF]

Exam ples:

Exam ple 1
You can use the [SmCAP] Token to capture text beginning with {small
caps on} or to strip unneeded {small caps on} codes from the original
document. In the following example, [SmCAP] is included in the Top
rule, but omitted in the Bottom rule. This technique allows you to use
the {small caps on} code as a special text identifier and drops the code
from the output document:

Current Next
Element Element

body body
[SmCAP]*[TeXt + #][HNL]+

10 [TeXt + #][HNL]

Exam ple 2
The following example illustrates that you can capture plain text in the
Top rule and write it back in small caps. Note that the [SmCAP] Token
is balanced by a [SmCAP/](small caps off) Token in the Bottom rule. If
you do not insert the [SmCAP/] off Token, then the [SmCAP] (on) Token
will have no intentional ending, and may serve to format a longer string
of text than you intend.

Current Next
Element Element

body body
[TeXt + #][HNL]+

10 [SmCAP][TeXt + #][SmCAP/][HNL]

Commands and Definitions / 88

Notes:
The [CF] and [TeXt + #] Supertokens start with the code for {small caps
on}.

The [SmCAP] and [SmCAP/] Tokens may be used in conjunction with
the [FILTxT] Supertoken to capture paragraph leaders or character for-
matting within a paragraph. See Example under [FILTxT] in this chap-
ter for further information.

89 \ TagWrite: Command Reference, Part 2

[SmCAP/]

Definition:
A [SmCap/] Token in the Top line of a rule captures the occurrence of a
{small caps off} code in the input document.

A [SmCap/] Token in the Bottom line of a rule inserts a {small caps off}
code into the output document.

Starts:
None

Stops:
[STab], [FILTxT], [PF]

Notes:
Caution: Do not use [SmCAP/] in the Bottom rule unless it is pre-
ceded somewhere in the rule by [SmCAP] (on). Some word proces-
sors cannot tolerate the presence of an “off” code if there is no prior
“on” code.

The [SmCAP] and [SmCAP/] Tokens may be used in conjunction with
the [FILTxT] Supertoken to capture character formatting at the start of
a paragraph or character formatting within a paragraph. See the Exam-
ple under [FILTxT] in this chapter for further information.

Commands and Definitions / 90

START

Definition:
START is not a Token or Supertoken. Notice that START is not con-
tained in square brackets ([]). START is a required file marker, entered
as the Current Element in Rule 0 of every Template.

START is hard coded into the Current Element of Rule Zero and cannot
be edited.

Notes:
1. Normally, the START Element consists of a blank Top and Bottom line.

It is not advised to use the Top line of the START Rule. The Bottom line
can be used to place information at the beginning of the text file.

2. Not appended. Note that Rule 0 is not appended using the TagWrite Ap-
pend utility. If there is information in the Bottom line of Rule 0, it will
be lost in the append process.

3. A Next Element name is required.

In most instances, the first information in the START rule is the Next
Element which directs the Template to the opening Current Element
for the particular application.

91 \ TagWrite: Command Reference, Part 2

[STRKOFF]

Definition:
A [STRKOFF] Token in the Top line of a rule captures the occurrence of
a {strikethrough off} code in the input document.

A [STRKOFF] Token in the Bottom line of a rule inserts a
{strikethrough off} code into the output document.

Starts:
None

Stops:
[FILTxT], [STab], [PF]

Notes:
The [STRKTHRU] and [STRKOFF] Tokens can be used in conjunction
with the [FILTxT] Supertoken to capture {strikethrough} codes that be-
gin paragraphs, or to capture character formatting within a paragraph.
See the Example under [FILTxT] in this chapter for further information.

Caution: Do not use [STRKOFF] in the Bottom rule unless it is pre-
ceded somewhere in the rule by [STRKTHRU] (on). Some word proc-
essors cannot tolerate the presence of an “off” code if there is no
prior “on” code.

Commands and Definitions / 92

[STRKTHRU]

Definition:
A [STRKTHRU] Token in the Top line of a rule captures the occurrence
of a {strikethrough on} code in the input document.

A [STRKTHRU] Token in the Bottom line of a rule inserts a
{strikethrough on} code into the output document.

Starts:
[TeXt + #], [KEEP], [CF], [CF + PF]

Stops:
[FILTxT], [STab], [TxT/all], [PF]

Exam ple:
You can use the [STRKTHRU] Token to strip unneeded {strikethrough}
codes from the input document. In the following example, [STRKTHRU]
is included in the Top line of the rule, but omitted in the Bottom line.
This technique effectively drops the {strikethrough on} code from the
output document.

Current Next
Element Element

0 body body
[STRKTHRU]*[TeXt + #][HNL]+

00 [TeXt + #][HNL]

Notes:
The [CF] and [TeXt + #] Supertokens capture the code for
{strikethrough} (on). The code for {strikethrough} (on) will thus be writ-
ten out to the new text file if [TeXt + #] appears in the Bottom line. The
solution is to capture the {strikethrough} word processing code with
[STRKTHRU] in the Top line rule. In the example above, we did capture
the {strikethrough} code in the Top rule, and chose not to write it back
in the Bottom.

The [STRKTHRU] and [STRKOFF] Tokens may be used in conjunction
with the [FILTxT] Supertoken to capture a {strikethrough} code that be-
gins a paragraph, or to capture {strikethrough} character formatting
within a paragraph. See Example 1 under [FILTxT] in this chapter for
further information or see the opening examples in Chapter 10 in the
Template Designer’s Guide.

93 \ TagWrite: Command Reference, Part 2

[SUPER], [SUB] (Super and Subscript)

Definition:
A [SUPER] Token in the Top line of a rule captures the occurrence of a
{superscript on} code in the input document. The Token in the Bottom
line of a rule inserts a {superscript on} code into the output document.

A [SUB] Token in the Top line of a rule captures the occurrence of a
{subscript on} code in the input document. The Token in the Bottom
line of a rule inserts a {subscript on} code into the output document.

A [SUPEROFF] Token in the Top line of a rule captures the occurrence
of a {superscript off} code in the input document. The Token in the Bot-
tom line of a rule inserts a {superscript off} code into the output docu-
ment.

A [SUBOFF] Token in the Top line of a rule captures the occurrence of a
{subscript off} code in the input document. The Token in the Bottom
line of a rule inserts a {subscript off} code into the output document.

Starts:
None

Stops:
[STab], [FILTxT]

Notes:
Do not use [SUPEROFF] or [SUBOFF] in the Bottom rule unless it is
preceded somewhere in the rule by [SUPER] or [SUB]. Some word proc-
essors cannot tolerate the presence of an “off” code if there is no prior
“on” code.

The superscript and subscript TagWrite Tokens may be used in con-
junction with the [FILTxT] Supertoken to capture character formatting
at the start of a paragraph or character formatting within a paragraph.
See the first part of Chapter 10 in the Template Designer’s Guide for an
explanation of how the “filtxt” Element works.

Commands and Definitions / 94

[TAB]

Definition:
A [TAB] Token in the Top line of a rule captures the occurrence of a
{tab} code in the input document.

A [TAB] Token in the Bottom line of a rule inserts a {tab} code into the
output document.

Starts:
[KEEP], [STab], [PF], [CF + PF]

Stops:
[FILTxT], [STab], [NO], [CF], [TxT/all]

Exam ple:
In the following example, the [TAB] Token is used to identify paragraph
levels. The number of {tab} codes entered before a paragraph allows the
Template to determine the paragraph type or level.

body body

[CF]*[Tab][TeXt +#] [HNL]+

10 <para1>[TeXt +#] [HNL]

0 body

[CF]*[Tab][CF]*[Tab][TeXt +#] [HNL]+

<para2>[TeXt +#][HNL]

0 body

[CF]*[Tab][CF]*[Tab][CF]*[Tab][TeXt +#] [HNL]+

<para3>[TeXt +#][HNL]

Notes:
Do not confuse a {tab} code with an {indent} code. They are different
word processing commands. Also, do not confuse a {true tab} code with
a Microsoft Word {first line indent} code.

[TAB] and [STab] are different. [STab] only serves as a substitute for
[TAB] when the Token is used in a rule to pick up a {first line indent}
which may be a true {tab} or Microsoft Word {first line indent}. See the
discussion on this topic under [STab] in this chapter for further infor-
mation.

A {tab} code, when entered at the beginning of a paragraph, causes the
first line of text to be moved in from the left margin. The remaining
lines are flush left to the margin.

{Tab} codes are often used between the columns of tables. Since a {tab}
code stops [FILTxT], you can create Template routines that will tag vir-
tually any tabbed table entry routine. If your tables use tabs to sepa-
rate columns and you want to create special Template tagging
routines, you can create new Supertokens for the purpose.

95 \ TagWrite: Command Reference, Part 2

Table Tokens
Tagwrite supports tagging of cells and rows of tables generated from
within Microsoft Word (RTF) and WordPerfect. A different set of table
Tokens is used for each word processor.

RTF Table Tokens:

RTF Control Meaning TagWrite Token
\trowd reset to table row defaults [TBLONRTF]
\cell end of cell [/CELLRTF]
\row end of row [/ROWRTF]
\intbl new row within table [ROWnuRTF]

WordPerfect Table Tokens:

Meaning TagWrite Token
Table on/table definition [TBLONWP]
Beginning of a cell [CELLWP]
Beginning of a row at end of line [ROWWP1]
Beginning of row at end of page [ROWWP2]

Note:
The use of these Tokens is rigid and well defined. Their correct use is
explained and illustrated in the appropriate sections of Chapter 8 in
the Template Designer’s Guide.

Commands and Definitions / 96

[TOC]

RTF Only

Definition:
The [TOC] Token is used in RTF templates only to search for text which
has been inserted within an RTF table of contents group for purposes
of automatic table of contents generation. The [TOC] Token, when used
correctly, enables you to capture text which has been marked for table
of contents generation and insert that text within descriptive tags suit-
able for your document publishing system. For information about
marking text for inclusion within a table of contents with your RTF
word processing software, consult your word processor’s technical
documentation.

Starts:
None

Stops:
[FILTxT], [CF], [PF], [CF+PF]

Exam ples:
The [TOC] Token represents the start of the RTF table of contents
group, and must be used in conjunction with the Supertoken [GRPTxT]
and the Token [/GRP]. In the following example, [TOC] is used in the
body element. When a [TOC] Token is encountered, the Template
changes to the “toc” element, where it searches for the text which has
been marked for table of contents within a paragraph. When the end of
the paragraph is reached, the Template returns to the body element:

Current Next
Element Element

1 body toc
[FILTxT]

20 <para>[FILTxT]

2 toc toc

[TOC][CF+PF]*[GRPTxT][/GRP]

40 <toc>[GRPTxT]</toc>

3 toc toc

[FILTxT]

30 [FILTxT]

4 toc body

[HNL]+

20 [HNL]

97 \ TagWrite: Command Reference, Part 2

[TeXt + #]

Definition:
A [TeXt + #] Supertoken in the Top line of a rule is started by any alpha-
numeric character, by punctuation, or by certain character format
commands noted below. [TeXt + #] captures all text and formatting
commands of any length until a {hard new line} code is encountered.
The {hard new line} stops [TeXt + #], but the {hard new line} is not cap-
tured by [TeXt + #].

A [TeXt + #] Supertoken in the Bottom line of a rule inserts the string
captured by [TeXt + #] in the Top line of the rule.

Code No.:
80000001

Started by:
All numbers, letters, and punctuation as well as these codes: {bold on},
{underline on}, {italics on}, {small caps on} and {strikethrough on}.
[TeXt + #] is not started by paragraph format codes such as: {tab}, {cen-
ter}, {flush right}, {indent}, or {first line indent}.

Stopped by:
[HNL]

Notes:
Notice that the codes: {bold on}, {underline on}, {italics on}, {small caps
on} and {strikethrough on} all start [TeXt + #]. This means that if you
want to specifically trap these character format codes, you must place
the desired character format Token or [CF] before [TeXt + #] on the Top
line.

You cannot place more than one [TeXt + #] Supertoken in the Bottom
line of a rule.

If you place more than one [TeXt + #] Supertoken in the Top line, only
the contents of the last [TeXt + #] Token in the Top line will be avail-
able. This is true because the contents of [TeXt + #] in the Top line will
be replaced every time the Supertoken’s requirements are met.

Commands and Definitions / 98

[<TeXt>]

Definition:
A [<TeXt>] Supertoken in the Top line of a rule captures alphanumeric
characters, punctuation and format commands delimited by angle
brackets < >. The left angle bracket delimiter < does not start [<TeXt>]
and the right angle bracket > stops, but is not captured by, [<TeXt>].

A [<TeXt>] Supertoken in the Bottom line of a rule takes the characters
captured by the [<TeXt>] Supertoken in the Top line of the rule and
places them into the output document. Note that [<TeXt>] does not cap-
ture the angle bracket itself, thus the angle bracket ASCII characters
are not transferred to the Bottom line by [<TeXt>].

Hex No.:
0x80000020

Started by:
Any alphanumeric character and all punctuation except the left and
right angle brackets < >.

Stopped by:
A left or a right angle bracket < or > or the [HNL] code.

Notes:
The purpose of the [<TeXt>] Supertoken is not to capture the angle
brackets, but rather to capture the text embedded between angle
brackets.

Once the text embedded in angle brackets is captured in the Top, you
can write it back in any format in the Bottom or throw it away.

See Untagging in Chapter 9 of the Template Designer’s Guide and Flat
ASCII in Chapter 8 of that manual for examples.

99 \ TagWrite: Command Reference, Part 2

[TxT/all]

Definition:
A [TxT/all] Supertoken in the Top line rule captures one and only one
upper or lower case alphabetic character.

A [TxT/all] Supertoken in the Bottom line of a rule takes the character
captured by the [TxT/all] Supertoken in the Top line and places it into
the output document. If you don’t use the [TxT/all] Supertoken in the
Bottom rule, the character is discarded.

Code No.
80000100

Started by:
Any upper or lower case alphabetic character.

Stopped by:
All punctuation, any alphanumeric character, and these codes: {tab},
{indent}, {center}, {flush right}, {first line indent}, {space}, {hard space},
{bold}, {italics}, {small caps}, {strikethrough}, {underline}, and {hard new
line}.

Exam ple:
The [TxT/all] Supertoken can be used to remove a letter (a, b, c, A, B,
C, etc.) that serves as an ordering system for lists or paragraphs in the
input document.

Sample text would look like this:

a. Text of the paragraph

(a) Text tabbed one level

a. Text tabbed two levels with “a” underlined

The example Template rules that follow search for:

Rule 1 – a text paragraph preceded by a letter and a period.

Rule 2 – a text paragraph preceded by a {tab} code and a letter in actual
parentheses.

Rule 3 – a text paragraph preceded by two {tab} codes, an underlined
letter and a period.

Commands and Definitions / 100

Current Next
Element Element

1 body body
[TxT/all](.)[TeXt + #][HNL]+

10 <para1>[TeXt + #][HNL]

2 body body

[TAB](’ (’)[TxT/all](’) ’)[TeXt + #][HNL]+

11 <para2>[TeXt + #][HNL]

3 body body

[TAB][TAB][ULIN][TxT/all](.)[TeXt + #][HNL]+

12 <para3>[TeXt + #][HNL]

The single quotes around the left and right parens in the second exam-
ple rule are necessary because we are searching for actual parenthe-
ses. Left and right parens are reserved characters in the TagWrite
Template Editor, so they must be enclosed in single quotes if they are
to be treated as actual text.

Notes:
Use [TxT/all] when the input document contains alphabetized para-
graph ordering that must be identified and tagged.

Use [TxT/all], as in this example, when the input document contains
alphabetized paragraph ordering and the output document requires
that paragraph numbering (alphabetizing) be replaced by tagnames
that identify the level of the paragraph. The letter is captured in the
Top line of the rule but is not written back in the Bottom line. Instead,
it is replaced by a tagname.

Virtually all SGML Document Type Definitions and typesetting systems
have this requirement. For example, [TxT/all] is also used for SGML ap-
plications where paragraph numbers are replaced by tag names.

To capture numbers, substitute the [NO] Supertoken for the [TxT/all]
Supertoken in the Top rule line.

A more robust version of the examples above would search for stray
spaces or tabs before the [TeXt + #] Supertoken to ensure that the spac-
ing between the text and the typeset auto numbering is consistent.

101 \ TagWrite: Command Reference, Part 2

[ULIN]

Definition:
An [ULIN] Token in the Top line of a rule captures the occurrence of an
{underline on} code in the input document.

An [ULIN] Token in the Bottom line of a rule inserts an {underline on}
code into the output document.

Starts:
[TeXt + #], [KEEP], [CF], [CF + PF]

Stops:
[STab], [FILTxT], [TxT/all], [PF]

Exam ples:

Exam ple 1
You can use the [ULIN] Token to strip unneeded underline formatting
codes from the document. In the following example, [ULIN] is included
in the Top rule, but omitted from the Bottom rule. This technique effec-
tively drops the underline from the file created by TagWrite.

Current Next
Element Element

body body
[ULIN]*[TeXt + #][HNL]

10 [TeXt + #][HNL]

Exam ple 2
You can use the [CF]* Supertoken in the Top line to strip formatting
codes from the input document. In the Bottom rule, you can write back
{underline}, the desired text, and {underline off}. This technique allows
selective output of underline in the file created by TagWrite.

Current Next
Element Element

body body
[CF]*[TeXt + #][HNL]

10 [ULIN][TeXt + #][ULINOFF][HNL]

Commands and Definitions / 102

Notes:
Since [TeXt + #] is started by the {underline on} code, an {underline}
code at the beginning of a paragraph will trigger it. In fact, the {under-
line on} code will be the first character captured by [TeXt + #]. If the
[TeXt + #] Supertoken is then written back in the Bottom line, the {un-
derline on} code will be retained and written to the new document. If
you want to trap and remove the {underline on} code, you must use the
[ULIN] Token (or the [CF] Supertoken) before [TeXt + #] in the Top line
of the rule. The Top rule of Examples 1 and 2 illustrate the trapping
technique.

The [ULIN] and [ULINOFF] Tokens may be used in conjunction with the
[FILTxT] Supertoken to capture character formatting within a para-
graph. See the first part of Chapter 10 in the Template Designer’s
Guidefor an example of how the “filtxt” Element is constructed.

103 \ TagWrite: Command Reference, Part 2

[ULINOFF]

Definition:
An [ULINOFF] Token in the Top line of a rule captures the occurrence
of an {underline off} code in the input document.

An [ULINOFF] Token in the Bottom line of a rule adds an {underline off}
code to the output document.

Starts:
none

Stops:
[FILTxT], [STab], [PF]

Notes:
See Example 2 in the [ULIN] (on) section of this chapter for an illustra-
tion of use in the Bottom line of [ULINOFF] when writing back under-
lined text.

Caution: Do not use [ULINOFF] in the Bottom rule unless it is pre-
ceded somewhere in the rule by [ULIN] (on). Some word processors
cannot tolerate an “off” code without a prior “on” code.

The [ULIN] and [ULINOFF] Tokens may be used in conjunction with the
[FILTxT] Supertoken to capture character formatting within a para-
graph. See the example under [FILTxT] in this chapter and the first sec-
tion of Chapter 10 of the Template Designer’s Guide.

Commands and Definitions / 104

WordPerfect Justification Group

Center justify:
WordPerfect 5.1 including WordPerfect For Windows allow text to be
centered normally or centered with justification. Normal center and
justified center are two different format commands.

Normal WordPerfect {center} centers only one line of text. It does not
wrap.

Center justify permits multiple, wrapping lines centered one over the
other.

Handling of normal {center} and {center justified} is described in the
section on the [CENTER] Token, page of this chapter.

Right justify:
Text in WordPerfect formatted as {right justify} causes text to align
evenly on the right margin of the page with a ragged left margin.

WordPerfect {right justify} is supported by the [FLUSH^RT] TagWrite
Token described on page of this chapter.

Full justified text
WordPerfect 5.l and higher supports {full justify}. Full justification
causes text to be aligned evenly at the left and right margins of a page.

WordPerfect {full justify} is considered a default by TagWrite. That is,
TagWrite does not consider {full justify} to be a discrete format com-
mand in WordPerfect. The TagWrite [JUST] Token does not capture
WordPerfect {full justify}.

TagWrite supports {full justify} with the [JUST] Token for Microsoft
Word (RTF) described on page .

Left justified text
WordPerfect {left justify} is considered a default by TagWrite. TagWrite
does not support a Token to capture {left justify}.

105 \ TagWrite: Command Reference, Part 2

[/WPDATA]

Definition:
The [/WPDATA] Token is used only in WordPerfect templates that sup-
port Styles applications.

[/WPDATA] represents the WordPerfect code that signals the end of the
formatting data associated with a WordPerfect style. The [/WPDATA]
Token is required on the Bottom lines of rules that write back WordPer-
fect styles; in such instances it immediately follows the style Token.

The [/WPDATA] Token must not be used with RTF style applications.

Correct use of [/WPDATA] is explained in the manual titled “Preparing
a Styles Application” which is part of the TagWrite Styles Module.

Starts:
None

Stops:
[CF], [PF], [CF+PF], [STab]

Commands and Definitions / 106

[WPLINK]

Definition:
“Link” is the WordPerfect term for Dynamic Data Exchange (DDE) in
the Microsoft Windows environment.

Within the native WordPerfect file, the DDE link information is con-
tained in a WordPerfect, link information group. This information
group is not an actual part of the text file since it is stored in a WordPer-
fect binary format.

The [WPLINK] TagWrite Token captures the entire WordPerfect link
group. The information captured in [WPLINK] must be written back on
the bottom line using [ALL].

Element Element

1 filtxt filtxt
 [WPLINK]

20 <link path> [ALL]

Starts:
None

Stops:
[FILTxT]

On the Bottom line you may write any ASCII text information before
and after the [ALL] Token. With this technique, the path name can be
surrounded with any information, like a tag or other information, that
is required for your system.

Caution: Do not use [WPLINK] Token on the Bottom line! To write
back the link information, you must use the TagWrite [ALL] Token.

Save Link As ASCII
When the WordPerfect file is Saved As ASCII through the TagWrite
menu, the link path information is preserved as ASCII text information.

Untagging and Writing WordPerfect Links
Caution: TagWrite does not allow untagging a document and writ-
ing back WordPerfect links to create a valid WordPerfect file. The
[WPLINK] Token cannot be used on the Bottom line of a rule.

107 \ TagWrite: Command Reference, Part 2

	Table of Contents
	Command Reference Guide 1
	
	Part 1 3
	Overview 3
	Tokens 4
	Supertokens 7
	TagWrite Special Codes 8
	Reserved Characters In the Template Editor 9
	Frequency Indicators 10
	Logical Operators 11
	Parenthetical Expressions 12
	The & Ampersand Designates a Style Token 13
	Counters 13

	
	Part 2 14
	Overview 14
	Conventions 15
	Distinguishing Tokens from a Wordprocessor Code 15
	& Ampersand [&style] 16
	* (asterisk) 17
	+ (plus symbol) 20
	? (question mark) 21
	() (parentheses) 22
	| (vertical bar) 24
	[-] (hyphen) 26
	[^] (normal space) 28
	[ALL] 30
	[BELL] 31
	[BLD] 32
	[BLDOFF] 34
	[CENTER] 35
	[CF] (Character Format) 37
	[CF + PF] 39
	COUNTER TOKENS 41
	[CR][LF] 46
	[DULIN], [DULINOFF] (double underline) 50
	[ENDNOTE] (WordPerfect only) 52
	FIELDS (RTF only) [FLD], [FLDINST], [FLDRSLT] 53
	[FILTxT] 55
	[Flush^Rt] 57
	[FOOTNOTE] 58
	[GRPTxT] 59
	[/GRP] 61
	[HIDE] 62
	[HNL] 63
	[HPg] 66
	[H^] 67
	[INDEX] 68
	[INDT] 70
	[ITAL] 72
	[ITALOFF] 73
	[JUST] (RTF Only) 74
	[KEEP] 75
	[NO] 77
	[PF] Paragraph Format 80
	[PLAIN] 82
	[RESET] 84
	[REVISED], [REVOFF] 87
	[SmCAP] 88
	[SmCAP/] 90
	START 91
	[STRKOFF] 92
	[STRKTHRU] 93
	[SUPER], [SUB] (Super and Subscript) 94
	[TAB] 95
	Table Tokens 96
	[TOC] 97
	[TeXt + #] 98
	[<TeXt>] 99
	[TxT/all] 100
	[ULIN] 102
	[ULINOFF] 104
	WordPerfect Justification Group 105
	[/WPDATA] 106
	[WPLINK] 107

